
UNIVERSITY OF TRENTO

Department of Industrial Engineering

Master Degree in Mechatronics Engineering

A model predictive control approach for fatigue aware
robotic heavy manipulation

Candidate:
Pasquale Buonocore

Supervisor:
Prof. Andrea Del Prete

Tutor:
Dott. Matteo Parigi Polverini
Dott. Arturo Laurenzi
Dott. Enrico Mingo Hoffman

Academic year 2019-2020

To my family...

Abstract

In the last decade disaster-response robotics has gained more and more attention in the
robotic community for its potential benefit in supporting rescuers on disaster sites. For
example, robots for disaster scenarios can assist human rescuers in performing heavy ma-
nipulation tasks in hazardous environments. A crucial problem for such robots, which is
barely addressed in the literature, is the impact of thermal fatigue, which may deteriorate
the task performance and eventually damage the robot. This thesis proposes to face the
problem from a Nonlinear Model Predictive Control (NMPC) perspective, such that the
motor thermal model is directly exploited to predict and constrain the motor temperature.
The proposed approach is meant to react to and control the robot’s thermal fatigue while
executing a heavy manipulation task. Since NMPC is a technique based on the recursive
solution of Optimal Control Problems (OCP), the first purpose of this thesis is to formalize
an OCP describing a heavy object manipulation task for a dual arm manipulator, where
thermal fatigue constraints are explicitly taken into account. Each instance of the NMPC is
solved with the direct multiple shooting method, thanks to CasADi open-source library for
optimization. Based on such optimal control problem, this work shows how the nonlinear
model predictive control algorithm is implemented in the Robotic Operating System (ROS)
environment. The control algorithm is finally tested on the CENTAURO platform by per-
forming two heavy manipulation tasks, ensuring the prevention of thermal burnout. The
first experiment consists in the platform holding a box in a certain position, while in the
second one the robot is required to move the box center of mass along a circular trajectory
at a fixed distance from its pelvis. We compared the NMPC results with the solution of
the same problem without thermal constraints and the solution of a minimum effort prob-
lem. The proposed NMPC effectively prevented the thermal burnout by adapting the robot
configuration at run-time, finding a trade-off between task completion and fulfillment of the
thermal fatigue constraint.

ii

Contents

Abstract i

Contents ii

List of Figures iv

1 Introduction 1
1.1 Disaster scenario robotics . 1
1.2 The heating problem . 2
1.3 Thesis contribution . 4
1.4 Overview . 4

2 Nonlinear model predictive control 6
2.1 Nonlinear programming . 6
2.2 Continuous optimal control problem . 9
2.3 Nonlinear Model Predictive Control . 15

3 Kinematics and Dynamics of a Robotic Manipulator 18
3.1 Mathematical preliminaries . 18
3.2 Forward and inverse kinematics . 23
3.3 Forward and inverse dynamics . 25
3.4 Statics . 25

4 Fatigue aware NMPC for bimanual heavy manipulation 26
4.1 Problem statement . 26
4.2 Optimization variables . 28
4.3 Cost function formulation . 29
4.4 Constraint formulation . 29
4.5 Resulting optimal control problem . 40
4.6 Nonlinear model predictive control formulation 41

5 Validation 44
5.1 The CENTAURO platform . 44

5.2 Tools overview . 46
5.3 Model predictive control in ROS . 48
5.4 Experimental set-up . 49
5.5 Payload holding experiments . 50
5.6 Payload circular trajectory experiment . 61

6 Conclusion 71
6.1 Future research directions . 72

A Centauro platform limits 74
A.1 Joint limits . 74

B Test parameters 75
B.1 Payload holding experiment . 75
B.2 Circular trajectory tracking experiment . 76

Bibliography 77

iv

List of Figures

1.1 Examples of disaster scenario robots . 2

2.1 Optimal control time evolution . 9
2.2 Optimal control methods . 10
2.3 Direct single shooting method . 12
2.4 Direct multiple shooting method . 13
2.5 Direct collocation integration step . 14
2.6 Model predictive control scheme . 15
2.7 Receding horizon control . 16

3.1 Pose of a rigid body . 19

4.1 Bimanual manipulator model . 27
4.2 BLCD - Equivalent electric circuit . 31
4.3 BLCD - Thermal power circuit . 32
4.4 Dual arm manipulator platform . 33
4.5 Payload free body diagram . 36
4.6 Theory of friction cone . 37
4.7 Linearized friction cone . 38
4.8 Payload friction cone . 39
4.9 From OCP to NMPC scheme . 42

5.1 Centauro robot . 44
5.2 Centauro robot arm . 45
5.3 Centauro robot leg . 46
5.4 Robotic operating architecture . 48
5.5 NMPC implementation is ROS . 49
5.6 Payload holding task . 51
5.7 Payload holding - Joint temperatures evolution at initialization 53
5.8 Payload holding - Run-time joint angles comparison 54
5.9 Payload holding - Run-time joint velocities comparison 55
5.10 Payload holding - Run-time joint torques comparison 56
5.11 Payload holding - Run-time joint temperatures comparison 57

v

5.12 Payload holding - Run-time box position comparison 58
5.13 Payload holding - Run-time local contact forces comparison 59
5.14 Payload holding - Configurations evolution . 60
5.15 Circular trajectory to track . 61
5.16 Circular trajectory tracking - Run-time joint angle comparison 63
5.17 Circular trajectory tracking - Run-time joint velocities comparison 64
5.18 Circular trajectory tracking - Run-time joint torques comparison 65
5.19 Circular trajectory tracking - Run-time joint temperatures comparison 66
5.20 Circular trajectory tracking - Run-time box position and orientation comparison 67
5.21 Circular trajectory tracking - Run-time global contact forces comparison 68
5.22 Circular trajectory tracking - Run-time local contact forces comparison 69
5.23 Circular trajectory tracking - Configuration evolution 70

1

Chapter 1

Introduction

1.1 Disaster scenario robotics

From hurricanes to earthquakes, disaster scenarios clearly revealed the need for robots capa-
ble to meet real-world requirements. Humanoid robotic platforms have tremendous potential
for this job and have attracted increasingly consideration in the last decade for the role in
support of rescuers on disaster-response missions given that they can operate and assist in
places too dangerous for humans accomplishing hazardous tasks.

Researchers and industries have been working intensely on the subject and in the last
years, interesting results have been achieved. Figure 1.1 shows some solutions from all around
the world with the purpose of delivering a robot capable of facing disaster response require-
ments. For instance, RoboSimian in Figure 1.1b is a limbed robot developed at NASA’s Jet
Propulsion Laboratory (JPL). It was designed to operate in environments too dangerous or
difficult for human intervention and it is able to navigate difficult terrain and perform tasks
requiring extreme dexterity. Figure 1.1c instead shows E2-DR, a strong and nimble human
size robot which is the research result of the Honda group. It is capable of squeezing through
30 cm gaps, ramping stairs, stepladders and vertical ladders and so forth. Extremely posi-
tive results were obtained on the field with the Colossus robot designed and built by Shark
Robotics. Colossus, in Figure 1.1d, is a versatile remote-controlled robot designed to support
firefighters and first-responders in dangerous missions. With a high-pressure water cannon
and powerful all-terrain treads, it can help extinguish fires, clear away debris, and evacuate
victims. The Centauro robot, presented in figure 1.1a, was designed at the Italian Institute
of Technology (IIT) with the purpose of accommodating the needs of real-world applications
with high payload and harsh physical interaction demands like in disaster-response scenarios
or heavy manipulation tasks. It combines powerful manipulation capabilities with a more
reliable quadrupedal hybrid wheeled-legged locomotion concept.

CHAPTER 1. INTRODUCTION 2

(a) Centauro (b) RoboSimian

(c) E2DR (d) Colossus

Figure 1.1: Examples of disaster scenario robots

In disaster-response scenarios, robots should possess the capability to manipulate heavy
payloads and interact with the damaged environment using heavy tools. Furthermore, they
should also be able to protect themselves. Several safety-related aspects have been already
addressed in robotics research, examples of which range from avoiding collisions [1] to con-
trolling impact forces [2], [3]. Another important aspect of robot safety is related to actuator
thermal burnout, which is described in the following.

1.2 The heating problem

One crucial problem with such robots performing demanding manipulation tasks is to keep
actuator temperatures within safe limits, in order to avoid robot damage and contribute to
the loss of productivity. For example, in electric motors, high temperature increases the
winding resistance and causes demagnetization, which results in lower torque performance.

Those kinds of problems have already been faced in research. For example, the work on
the tree-climbing robot RiSE [4] presents a control strategy that maximizes robot velocity
while satisfying a constraint on the maximum permissible motor winding temperature. It
uses thermal models for constrained robot control. The system uses a 3-lump thermal model
which is highly robust and valid within a large range of environmental temperatures. It
requires two temperature sensors to measure internal and external temperatures. Some ac-

CHAPTER 1. INTRODUCTION 3

tuators have only one internal temperature sensor which severely limits the approach. In this
direction, researchers in [5] propose a technique for monitoring and management of robot
fatigue, which is composed of a two-stage reaction process that is triggered by different lev-
els of the joint temperature. In that case though, the management system is triggered once
the joint temperature exceeds the bound. The paper [6] faces the robot fatigue problem as
well. It does a time parameterization of pre-planned geometric robot paths using a time-
optimization problem with a temperature constraint. Our problem is though of considerably
higher complexity, both in the number of variables and of constraints: including not only
temperature but also kinematic and collision. Other related research includes temperature
prediction for humanoid robots [7], [8]. The robots used in that work (HRP-2, HRP-4R,
STARO) cannot measure actuator winding temperature and the authors overcome this by
assuming that the internal and external temperatures of the robot’s actuators are the same,
which is a severe assumption when we deal with heavy manipulation task. The work in [9]
proposes a method to bring out the maximum performance of electric motors aggressively,
and it uses a motor core temperature estimation to protect the motor burnout. The situation
is different with respect to our since it plans to construct water cooling systems as method
for motor cooling. The paper [10] proposes to deal with the optimization of velocity profiles
of robots manipulator with a minimum time criterion subject to thermal constraints. A very
similar method is presented in the paper [11], where researchers propose a method to reduce
power consumption and temperature for robots with high-power DC actuators without cool-
ing systems only through trajectory optimization motion planning. The study [12], instead,
proposes a DSP-based approach to limit the current of the most stressed joint using a simple
capacitance-resistance thermal model and a real-time calculation of the power losses. It is
possible by taking advantage of the long thermal time constants.

1.2.1 Thermal models

To put a constraint on motor temperatures, a model describing the thermal time evolution
needs to be identified. In literature, it is possible to find several thermal models ranging
from simple to complex ones. In the paper [11], a thermal model for brushless DC motors is
proposed. It uses a lumped capacitance method while considering heat transfer only through
conduction and free convection. It uses two temperature sensors, which is not possible in
our case as it will be shown in the next chapters. Papers [13], [14] presented two thermal
model based on a finite element approach to analyze the motor thermal behaviour, whereas
[15] presents a thermal network to describe the temperature distribution in an electric motor
in steady-state and dynamic conditions. A simple approach instead is presented in the
paper [9]. It presents a system of two equations to describe the temperature behaviour of a
brushless motor, in order to propose a method to bring out the maximum performance of
electric motors aggressively in humanoid robots.

CHAPTER 1. INTRODUCTION 4

1.3 Thesis contribution

The problem of overheating in robotics is usually tackled using cooling systems, but the
development of an actuator cooler is not always possible due to either lack of funding, space,
and design. A different approach to the problem could be the usage of control strategies
to manage the fatigue of the robot. To face that challenge, this thesis proposes a Model
Predictive Control (MPC) approach to react to and control the robot thermal fatigue while
executing a heavy manipulation task. It protects from motor overheating by taking into
account the motor temperature state in the optimization problem and using a thermal model
to predict the motor’s thermal behaviour. The main tasks of the thesis are listed as:

• Formalize the optimal control problem for fatigue aware robotic heavy manipulation.

• Formalize the nonlinear model predictive controller based on the previously defined
optimal control problem.

• Implement the nonlinear model predictive control exploiting the robotic operating sys-
tem.

• Test the model based controller on two different heavy payload manipulation tasks.

It is important to note that this method differs from a classical minimum effort approach
because the torque reduction is temperature dependent and considers thermal fatigue of
specific joints. For example, if some joints had considerably higher temperatures, torque
reduction would be focused on those joints. On the contrary, the general effort reduction
considers joints equally without taking their thermal fatigue into account. Our results show
that a robot can perform high-load tasks while preventing motors from overheating during
operation through joint reconfiguration; naturally, other joints must carry more load in order
to produce the desired task in the Cartesian space. As a result, it is possible to extend the
working time of the robot during tasks and avoid any potential damage due to the overheating
of the actuators.

1.4 Overview

The remainder of the thesis is structured as follows:

In Chapter 2 the background on nonlinear model predictive control is provided, start-
ing from the concepts of nonlinear programming problems and optimal control problems.
Successively, direct methods to deal with optimal control problems are described both from
a theoretical and practical standpoint.

In Chapter 3 background knowledge on mathematical modelling of robotic manipula-
tors is provided, ranging from the definition of the end-effector pose to the analysis of the

CHAPTER 1. INTRODUCTION 5

forward and inverse kinematic and dynamics of robots.

In Chapter 4 it is introduced the fixed-base bimanual manipulator platform over which
the problem is formulated. Then it is formalized the optimal control problem describing a
thermal bounded heavy payload manipulation in terms of optimization variables, cost func-
tion, and constraints. Finally, the complete optimal control problem is used as starting point
to define the model predictive controller.

In Chapter 5 details of the algorithm implementation are provided and the experimen-
tal results are summarized. Its first section gives the description of the real robot platform,
CENTAURO, and the software framework (CasADi,Pinocchio, ROS) exploited in this work.
Moreover, Chapter 5 presents the model predictive controller results in two heavy payload
manipulation tasks.

In Chapter 6 starting from the previous chapter results, conclusions are drawn and
discussed together with possible future work.

6

Chapter 2

Nonlinear model predictive control

This chapter gives an accurate background of model predictive control. It starts with the
concepts of nonlinear programming problem in Section 2.1 and optimal control problem
in Section 2.2. Successively, the main techniques to deal with optimal control problems
are introduced from both a theoretical and practical point of view. Section 2.3, instead,
concludes the chapter with the nonlinear model predictive control theory.

2.1 Nonlinear programming

In order to discuss optimal control problems in Section 2.2, we need some background knowl-
edge of nonlinear programming (NLP). NLP problems are an important class of continuous
optimization problems and they can be seen as the process of solving an optimization problem
where some constraints or the objective function are nonlinear. We formulate the nonlinear
programming problem as:

min
x ∈ Rn

f(x)

s.t. g(x) = 0,

h(x) ≤ 0

(2.1)

where the objective function f : Rn → R, the equality constraints g : Rn → Rng and
the inequality constraints h : Rn → Rnh are assumed to be at least once continuously
differentiable. A solution x ∗ is said to be feasible when it satisfies all the constraints. We
define the feasible set :

Ω := {x ∈ Rn | g(x) = 0 , h(x) ≤ 0} (2.2)

Among the feasible points, we define the optimal solution as the one that respects the first
and second order optimality conditions, which are described next. Before that, we need to
introduce the concept of active constraint and active set. An inequality constraint hi(x) ≤ 0
is said to be active at x* if and only if hi(x*) = 0. The index setA (x∗) containing the indices

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 7

of all the active constraints is defined as active set. Combining all the active inequalities
with all equality constraints, we define the matrix ḡ(x):

g̃(x) =

[
g(x)

hi(x) (i ∈ A (x∗))

]
(2.3)

We say that the linear independence constraint qualification(LICQ) holds at the feasible
point if all the active constraints are linearly independent. This condition is equivalent to
saying that the Jacobian matrix ∂ḡ

∂x
(x∗) is full rank. Now we can discuss the optimality

conditions.

First order optimality conditions

In continuous optimization, a feasible point x ∗ can be considered a candidate local minimizer
if it satisfies the first order optimality conditions. Once the linear independence constraint
qualification is satisfied at x ∗, the feasible point is a local minimizer of (2.1) if there exist
the so called multiplier vectors λ ∈ Rng ,µ ∈ Rnh such that the following system of equations
is satisfied:

∇f (x∗) +∇g (x∗)λ∗ +∇h (x∗)µ∗ = 0

g (x∗) = 0

h (x∗) ≤ 0

µ∗ ≥ 0

µ∗ihi (x
∗) = 0, i = 1, . . . , nh

(2.4)

Note that the first optimality conditions are known in literature as the Karush–Kuhn–
Tucker(KKT) conditions for constrained optimization. Those are an expansion of the La-
grange condition valid for only equality constrained problems. The first order optimality
conditions are necessary conditions and they become sufficient to guarantee the global op-
timality when the problem is convex. When dealing with KKT conditions, it is important
to define the Lagrangian function since it plays a crucial role in both convex and general
nonlinear optimization:

L(x,λ,µ) = f(x) + λTg(x) + µTh(x) (2.5)

Using the Lagrangian it is possible to express the first KKT conditions as:

∇xL (x∗,λ∗,µ∗) = 0 (2.6)

Second order optimality conditions

In general, the necessary conditions are not sufficient for optimality and additional informa-
tion is required, such as the second order sufficient conditions. Consider a point x∗ at which

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 8

linear independence constraint qualification holds together with multipliers λ∗, µ∗ so that
the KKT conditions are satisfied. Consider a basis matrix Z ∈ Rn×(n−nḡ) of the null space
of ∂ḡ

∂x
(x∗) ∈ Rnḡ×n, then the following conditions hold:

• If x∗ is a local minimizer, then ZT∇2
xL (x∗,λ∗,µ∗) Z ≥ 0

• If ZT∇2
xL (x∗,λ∗,µ∗) Z > 0 then x∗ is a local minimizer

The matrix ∇2
xL (x∗,λ∗,µ∗) plays an important role in optimization algorithms and is

called the Hessian of the Lagrangian, while its projection on the null space of the Jacobian
is called the reduced Hessian.

Nonlinear programming solver

To solve a nonlinear optimization problem with inequality constraints, two big families of
methods exist, both aiming at solving the KKT conditions:

• Interior point methods(IP). It uses a penalty function as part of globalization strat-
egy for Newton’s method. The fundamental idea is to construct a function whose un-
constrained minimum either is the desired constrained solution x∗ or is related to it
in a known way. An interesting introduction to barrier-method is given by [16]. From
a practical point of view, there exist several open-source software, like the IPOPT
package[17], that exploit this method to solve nonlinear programming problems.

• Sequential quadratic programming methods(SQP). It consists of simplifying the
NLP (2.1) by using a quadratic approximation of the cost function and a linear ap-
proximation of the constraints, and then using the solution to the quadratic model to
make a step towards a new point, where another quadratic model is formed. A very
good discussion on the issues arising in SQP is given by Boggs and Tolle [18]. A lot
of interesting implementations of the sequential quadratic approach can be found in
literature, and qpOASES, WORHP and SNOPT are an example of them.

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 9

2.2 Continuous optimal control problem

A nonlinear programming problem is characterized by a finite set of optimization variables
and constraints. Optimal control problems can involve continuous time functions as problem
constraints, thus it can be seen as an infinite-dimensional extension of a nonlinear problem.
Optimal control deals with the problem of finding a control law for a given system such
that a certain optimality criterion is achieved. It usually includes a cost function that is a
function of state and control variables. An optimal control describes the paths of the control
variables that minimize the cost function. Once we define x(t) as the vector of differential
state and u(t) as the vector of free control signals, an example of optimal control problem
formulation may be given as:

min
x(·), u(·)

∫ T

0

L(x(t), u(t))dt+ E(x(T))

s.t.

x(0)− x0 = 0 (fixed initial value),

ẋ(t)− f(x(t), u(t)) = 0, t ∈ [0, T] (ODE model),

h(x(t), u(t)) ≤ 0, t ∈ [0, T] (Path constraint),

r(x(T)) ≤ 0 (Terminal constraints)

(2.7)

x
0

Initial value

State x(t)

Path constraint h(x,u) < 0

Controls u(t)

Terminal

constraint

 r(x(T)) < 0

Tt0

Figure 2.1: Optimal control time evolution

In (2.7), the cost function is composed of an integral contribution L(x,u) called the
Lagrange term, and a terminal cost E(x(T)) called Mayer term. The combination of both is
called a Bolza objective.

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 10

2.2.1 How to solve optimal control problems

Numerical methods for solving optimal control problem and more general variants emerged
with the birth of the electronic computer in the 1950’s and were in the beginning typically
based on characterization on either the global optimum or the local optimum. There exist
different methods for optimal control problems ranging from dynamic programming using
the Bellman Optimality Equation, to indirect method using the Maximum Principle and
direct methods. For a complete overview as well as detailed information on those methods
see [19].

Continuous Time

Optimal Control

Tabulation in state-space

Hamilton - Jacobi - Bellman

Equation

Indirect methods,

Pontryagin:

Solve boundary value problem

Direct Methods:

Transform into Nonlinear

Program (NLP)

Direct Single Shooting:

Only discretization controls

in NLP (SEQUENTIAL)

Direct Multiple Shooting:

Controls and node start values

in NLP (SIMULTANEOUS)

Direct Collocation:

Discretized controls and states

in NLP (SIMULTANEOUS)

Figure 2.2: Optimal control methods

We will focus on direct methods. Those transform the original infinite optimal control
problem into a finite dimensional nonlinear programming problem (NLP), which is then
solved by exploiting numerical optimization methods. Roughly speaking, direct methods
transform the continuous time dynamic system into a discrete time system and then proceed
as described. The method is often sketched as ”first discretize, then optimize”. One of the
most important advantages of direct compared to indirect methods is that they can easily
treat inequality constraints. All direct methods are based on a finite dimensional parame-
terization of the control trajectory, but differ in the way the state trajectory is handled.

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 11

2.2.2 Direct approaches to continuous optimal control problem

For the solution of constrained optimal control problems in real world applications, direct
methods are nowadays by far the most widespread and successfully used techniques, and are
therefore used in this thesis. Two families of direct optimal control methods could be dis-
tinguished: sequential and simultaneous approach. In the sequential approach, represented
by the direct single shooting method, existing software are used to eliminate the state tra-
jectory from the problem formulation, leaving the control trajectory to be determined by
the nonlinear programming solver. In the second approach, the simultaneous approach, the
state trajectory is approximated by polynomials whose coefficients are determined together
with the control trajectory in the nonlinear problem solver. A key advantage of the simulta-
neous approach is that it can handle unstable systems, where simulating the system might
be impossible for the current guess of the control trajectory.

A hybrid approach is the direct multiple shooting method in which the state trajectory
is only partially eliminated from the NLP. The direct multiple shooting method has some
important properties of the simultaneous approach, in particular the handling of unstable
systems and the suitability for parallel computations. At the same time, it avoids the need to
store the whole state trajectory, which can be prohibitively expensive for large-scale systems.

Direct Single Shooting

The direct method eliminates the continuous time dynamic system in the problem. In order
to reach the goal, we need to parametrize the control function u(t) by piece wise constant
functions or by piecewise polynomials, as shown in Figure 2.3. We denote the finite control
parameters by the vector q, and the resulting control function by u(t; q).
The most widespread parameterization are piecewise constant controls, for which we choose
a fixed grid 0 = t0 < t1 < ... < tN = T, and N parameters qi ∈ Rnu , i = 0,, N-1, and
then we set:

u(t; q) = qi ∀ t ∈ [ti, ti+1] (2.8)

The dimension of the vector q = (q0, q1, ..., qN−1) is Nnu. Then the states vector x(t)
on [0, T] is regarded as dependent variables that are obtained by a forward integration of
the dynamics, starting at x0 and using the controls vector u(t; q). We denote the resulting
trajectory as x(t; q). In order to discretize inequality path constraints, we choose a grid,
typically the same as for the control discretization, at which we check the inequalities. Thus,
in single shooting, we transcribe the optimal control problem into the following nonlinear
programming problem:

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 12

tTt1

q0

q1
qN-1

f(t)
x(t,q)

state variable

u(t,q)

control variable

Figure 2.3: Direct single shooting method

min
q ∈ RNnu

∫ T

0

L(x(t; q), u(t; q))dt+ E(x(T ; q))

s.t.

h(x(ti; q), u(ti; q)) ≤ 0 i = 0, ..., N − 1 (discretized path constraints),

r(x(T ; q)) ≤ 0 (discretized path constraints)

(2.9)

As the only variable of this NLP is the vector q ∈ RNnu that influences all problem
functions, the above problem can usually be solved by a dense NLP solver in a black-box
fashion. In the case of piecewise controls we might use the fact that after the piecewise
control discretization we have basically transformed the continuous time OCP into a discrete
time OCP. This approach can handle an arbitrary number of path inequality constraints.
Note that it has the same complexity that we obtain in the standard implementation of the
multiple shooting approach, as explained next.

Direct Multiple Shooting

The direct multiple shooting method performs first a piecewise control discretization on a
grid, exactly as we did in single shooting:

u(t; q) = qi if t ∈ [ti, ti+1] (2.10)

Differently from the direct single shooting, the state variable x(t) is not parametrized as
function of the control, but it is solved separately on each interval [ti, ti+1], starting with
artificial initial values si, eq (2.11). We then need to ensure continuity between the intervals
and we impose the additional constraint (2.12).

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 13

ẋi = f(xi(t; si, qi), qi), t ∈ [ti, ti+1] (2.11)

xi(ti; si, qi) = si (2.12)

tTt1

q0

q1
qN-1

f(t)

s0
s1

s2
sN

x(t,q,s)

state variable

u(t,q)

control variable

Figure 2.4: Direct multiple shooting method

Then, compute numerically the cost function integrals

li(si, qi) :=

∫ ti+1

ti

L(xi(t; si, qi), qi)dt (2.13)

In the end, the nonlinear problem that is solved in multiple shooting and that is visualized
in the system of equations: (2.14)

min
s, q

N−1∑
i=0

li(si, qi) + E(sN)

s.t. x0 − s0 = 0 (Initial value),

xi(ti+1; si, qi)− si+1 = 0, i = 0, ..., N − 1 (Continuity condition),

h(si, qi) ≤ 0, i = 0, ..., N (Discretized path constraints),

r(sN) ≤ 0 (Terminal constraints)
(2.14)

Moving from direct single shooting to direct multiple shooting we basically traded non
linearity for problem size. The NLP in single shooting is small, but often highly nonlinear,
whereas the NLP for multiple shooting is larger but sparser and typically less nonlinear.
The direct collocation method goes a step further in the same direction, resulting in an even
larger, but even sparser and possibly less nonlinear NLP.

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 14

Direct collocation

As we do in multiple shooting method, in direct collocation we discretize the infinite OCP
in both controls and states on a fixed grid 0 = t0 < t1 < ... < tN = T. The main difference
between the two methods is that in each collocation interval, Figure 2.5 (recall that each
collocation interval corresponds to an integrator step), the state is not obtained by integration
but by approximation to a polynomial function.

Figure 2.5: Direct collocation integration step

We choose a parameterization of the controls on the same grid with control parameters
qk that yield on each interval a function uk(t; q). On each collocation interval [tk, tk+1],
look at the example in figure 2.5, a set of m collocation points t0k, t

1
k, . . . , tmk is chosen

and the trajectory is approximated by a polynomial pk(t; vk) with coefficient vector vk.
As equalities of the optimization problem, we now require additional constraint, named
collocation conditions, at each collocation point. We actually require that the polynomial
derivative at each collocation point is the same as the dynamic system we approximate:

sk = pk (tk; vk)

f
(
pk

(
t
(1)
k ; vk

)
, uk

(
t
(1)
k ; qk

))
= p′k

(
t
(1)
k ; v

)
...

f
(
pk

(
t
(m)
k ; vk

)
, uk

(
t
(m)
k ; qk

))
= p′k

(
t
(m)
k ; v

) (2.15)

If we summarize this system by the vector equation ck(sk, vk, qk) = 0 that has as many
components as the vector vi, if we require continuity across interval boundaries and we also
approximate the cost function integral, we obtain a large scale and sparse non linear problem:

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 15

min
s, v, q

N−1∑
0

lk(sk, vk, qk) + E(sN)

s.t. s0 − x0 = 0 (Fixed initial value),

ck(sk, vk, qk) k = 0, ..., N − 1 (Collocation condition),

pk(tk+1; vk)− sk+1 = 0 k = 0, ..., N − 1 (Continuity condition),

h(sk, qk) ≤ 0 k = 0, ..., N − 1 (Discretized path constraint),

r(sN)) ≤ 0 (Terminal constraints)

(2.16)

This large sparse NLP needs to be solved by structure exploiting solvers, and due to
the fact that the problem functions are typically relatively cheap to evaluate compared with
the cost of the linear algebra, nonlinear interior point methods are often the most efficient
approach here.

2.3 Nonlinear Model Predictive Control

So far, we have analyzed one single optimal control problem and focused on ways to nu-
merically solve this problem. Once we have computed such a solution, we might try to feed
in open loop the corresponding real process with the obtained control trajectory. Unfortu-
nately, the result will most probably be very dissatisfying, as the real process will typically
not coincide exactly with the model that we have used for optimization.
Observing the real process during its time development will allow us to correct the control
inputs online in order to get better performance. This procedure is called feedback control or
closed-loop control. Even tough the idea of optimal feedback control via real-time optimiza-
tion sounds challenging, it is common practice since decades in industrial process control
under the name of Model Predictive Control (MPC). The name nonlinear model predictive
control(NMPC), is reserved for the special case of MPC with underlying nonlinear dynamic
systems, which leads typically to non-convex optimization problems.

Model-based

optimizer
Process

main task

reference

r(t)

Optimized input

u(t)

Output

y(t)

Measurements

Figure 2.6: Model predictive control scheme

The idea of model predictive control is to solve an open-loop optimal control problem
every time period since new state measurement/estimation is available. Every time period

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 16

an optimization problem is solved and the solution for the whole prediction horizon is found
but only the first control action is applied to the plant. Next time a new measurement is
obtained, another open-loop optimization problem is solved and so on. Therefore, it becomes
a closed-loop control. The main stream implementation of MPC in discrete time, can be
formulated as follows:

• observe the current state of the system x0

• predict and optimize the future behaviour of the process on a limited time window
of N steps, called prediction horizon, by solving an open-loop optimization problem
starting at the state x0

• implement the first control action u0 at the real process, move the optimization horizon
one time step forward and repeat the procedure.

MPC is sometimes also called receding horizon control due to this movement of the
prediction horizon.

Past Future

u(t) control input

t

x(t) predicted output

t+1 t+Nu t+N
Control Horizon

Prediction Horizon

u0

x0

Figure 2.7: Receding horizon control

Model Predictive Control utilizes a built-in descriptive model of a system to predict the
behavior of the system to the optimized control commands. These predictions are used to
refine the optimization, anticipating future system responses. Moreover, it incorporates the
ability to set constraints on the input and output values in the calculation of the control
commands. Since MPC solves at each time sample an optimal control problem, it would be
nice to reduce the computation time. A common technique, as shown in figure 2.7, consist
in reducing the degree of freedom of the controller setting the Control Horizon. It means

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL 17

considering constant the control input after a certain number of samples, considered that
those will not influence the outcome as the first control steps do. This technique reduces
the complexity of the problem and results in smaller computation time. Another important
concept relative to model predictive control is the feasibility. We can ensure feasibility
when only the input variable is constrained. Constraints on output variables may make the
problem unfeasible and for N <∞ there is no guarantee of feasibility, where N =∞ ensures
feasibility. The user must set a reasonable value of N based on the dynamic behaviour of the
system to analyze. As far as stability is concerned, we may obtain it by setting and infinite
prediction horizon or imposing a terminal constraint like:

x(t+N) = 0 (2.17)

18

Chapter 3

Kinematics and Dynamics of a
Robotic Manipulator

A robotic manipulator can be seen as a kinematic chain of rigid bodies connected through
several types of joints. One end is generally fixed to a base, whereas an end-effector is fixed
to the other end. In order to control an object, the study of the end-effector position and
orientation is needed. This chapter starts with some mathematical background of rigid body
pose in Section 3.1 and then it is focused on the main concept of kinematics and dynamics
of manipulator in Sections 3.2,3.3.

3.1 Mathematical preliminaries

Robotic manipulation implies that parts and tools will be moved around in space by some
sort of mechanism. This naturally leads to a need for representing positions and orientations
of parts. Because of that, mathematical quantities that represent position and orientation
need to be described together with additional entities.

3.1.1 Description of a pose

Once a world reference frame is defined, it is possible to identify any point in space with a
[3x1] position vector. Because it is common to identify several coordinate systems in addition
to the world one, vectors must be tagged with information identifying which coordinate
system they are defined within. Figure (3.1) represents a rigid body, at which the reference
frame {B} is attached, and a coordinate system, {A}, with three orthogonal unit vectors.
The position of the rigid body is described by a vector and can equivalently be thought of
as a position in space:

oAB =

oxoy
oz

 (3.1)

CHAPTER 3. KINEMATICS AND DYNAMICS OF A ROBOTIC MANIPULATOR 19

o y

x

z o

y'

x'

z'

o

P

Ap

p

A

B

B

B

A

Figure 3.1: Pose of a rigid body

It is usually necessary to describe the orientation of a body in space in addition to its
position. If the orientation is not given, the complete location of a body is still not totally
specified since it may be oriented arbitrarily while keeping the same position. In order to
describe the orientation of a body, it is common to attach a coordinate system to the body
and then give a description of this coordinate system relative to the reference system using
a matrix called rotation matrix, like:

RA
B =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.2)

This particular rotation matrix describes {B} relative to {A}, more precisely it describes
the unit vectors of its three principal axes in terms of the coordinate system {A}. According
to the literature [20], there are several ways to compose the rotation matrix, ranging from
euler angles, zyz angles, rpy angles, angle and axis or unit quaternions.

Homogeneous transformation

As it was said in the previous paragraph, the pose of a rigid body is expressed with the
position vector and a rotation matrix expressed in terms of the components of the unit
vectors of a frame attached to the body.

Starting from the picture (3.1), consider the point P in space. The vector pA is identified
as the vector of coordinates of P with respect to the reference frame {A}. Consider now the
frame {B}, whose origin is described by oAB in the fixed reference frame and whose rotation

CHAPTER 3. KINEMATICS AND DYNAMICS OF A ROBOTIC MANIPULATOR 20

is described by the rotation matrix RA
B. Let also pB be the vector of coordinates of P with

respect to Frame {B}. According to simple geometry, the position of point P with respect
to the reference frame {A} can be expressed as:

pA = oAB + RA
BpB (3.3)

Thus, (3.3) represents the coordinate transformation of pB vector between two frames.
The inverse transformation can be obtained by premultiplying both sides of (3.3) by RA

B
T ;

it follows that:

pB = −RB
AoAB + RA

B
TpA (3.4)

If we adopt the homogeneous representation of a generic vector p̃ = [p 1]T , a more
compact representation of the relationship between the coordinates of the same point in two
different frames is possible thanks to the homogeneous transformation matrix.

AA
B =

[
RA
B oAB

0T 1

]
(3.5)

As can be easily seen from (3.5), the transformation of a vector from Frame {B} to
Frame {A} is expressed by a single matrix containing the rotation matrix of Frame {B} with
respect to Frame {A} and the translation vector from the origin of Frame {A} to the origin
of Frame {B}. Therefore, the coordinate transformation (3.3) can be compactly rewritten
as:

p̃A = AA
Bp̃

B (3.6)

The coordinate transformation between Frame {A} and Frame {B} is described by the
homogeneous transformation matrix AAB which satisfies the equation:

p̃B = AB
Ap̃

A =
(
AA
B

)−1
p̃A (3.7)

This matrix is expressed in a block-partitioned form as:

AB
A =

[
RAT
B −RAT

B oAB
0T 1

]
=

[
RB
A −RB

AoAB
0T 1

]
(3.8)

3.1.2 Geometric Jacobian and Analytical Jacobian

The jacobian constitutes one of the most important tools for manipulator analysis. It is used
to find singularities, to study redundancy, to determine inverse kinematics algorithms and
to describe the mapping between forces applied to the end-effector and resulting torques at
the joints. Above all, Jacobians describe the relationship between the joint velocities and
the end-effector linear and angular velocities in a linear fashion. There exist two different
formulations: Geometrical jacobian and Analytical jacobian.

CHAPTER 3. KINEMATICS AND DYNAMICS OF A ROBOTIC MANIPULATOR 21

Geometrical jacobian

The geometrical jacobian finds the relationship between the joint velocities and the end-
effector linear and angular velocities and it is constructed according to a geometric technique
in which the contributions of each joint velocity to the components of end-effector linear and
angular velocity are taken into account. In other words, it is desired to express the end-
effector linear velocity pe and angular velocity ωe as a function of the joint velocities q̇,
which depends on the manipulator configuration. With respect to the linear velocity, the
geometrical jacobian is computed according to the formula:

ṗe =
n∑
i=1

∂pe
∂qi

q̇i =
n∑
i=1

Piq̇i (3.9)

whereas respect to the angular velocity:

ωe =
n∑
i=1

ωi−1,i =
n∑
i=1

Oiq̇i (3.10)

In a more compact formulation it is possible to summarize the concept identifying the so
called differential kinematics equation, where J(q) is the geometrical jacobian.

ve =

[
ṗe
ωe

]
= J(q)q̇ =

[
Jp
Jo

]
q̇ (3.11)

Analytical jacobian

If the end-effector pose is specified in terms of a minimal number of parameters, it is possible
to compute the jacobian via differentiation of the direct kinematics function with respect to
the joint variables.

ṗe =
∂pe
∂q

q̇ = JP (q)q̇ (3.12)

φ̇e =
∂φe
∂q

q̇ = Jφ(q)q̇ (3.13)

The difference with respect to the geometrical jacobian regards the rotational speed.
In fact, when the minimal representation of orientation 1 in terms of three variables φe is
considered, its time derivative φ̇e in general differs from the angular velocity vector defined
above. That it is nice to know and tell us that if we are interested in the end effector linear
velocity, it is better to use the geometric jacobian.

1A minimal representation of orientation can be obtained by using a set of three independent angles
Φ = [φ θ ψ]T .

CHAPTER 3. KINEMATICS AND DYNAMICS OF A ROBOTIC MANIPULATOR 22

ẋe =

[
ṗe
φ̇e

]
=

[
JP (q)
Jφ(q)

]
q̇ = JA(q)q̇ (3.14)

For certain manipulator geometries, it is possible to establish a strong equivalence be-
tween J and JA. In fact, when the DOFs cause rotations of the end-effector all about the
same fixed axis in space, the two Jacobians are essentially the same.

3.1.3 Singular configuration

As it is mentioned above, the Jacobian in the differential kinematics equation defines a linear
mapping between the vector q̇ of joint velocities and the vector ve = [ṗe

TωTe]T of end effector
velocity.

ve = J(q)q̇ (3.15)

The jacobian is a function of the configuration q and the configurations at which J is
rank-deficient are defined kinematic singularities. It is commonly of high interest to have
knowledge of the singularities since at its neighborhood small velocities in the operational
space may cause large velocities in the joint space, or because a robot in singularity condition
shows reduced structure mobility. Moreover, such condition may induce infinite solutions to
the inverse kinematics problem.

3.1.4 Redundancy

A manipulator is said to be redundant when it has a number of degrees of freedom which
is greater than the number of variables that are necessary to describe a given task. A ma-
nipulator is intrinsically redundant when the dimension of the operational space is smaller
than the dimension of the joint space. Redundancy is a concept relative to the task assigned
to the manipulator. It contributes to robot dexterity and facilitates, enabling avoidance of
mechanical limits of robot joints, obstacle avoidance, singularity avoidance, optimization of
robot dynamics, etc. Unfortunately, redundancy usually increases the mathematical com-
plexity of the robot control problem. Its implications are particularly pointed out in the
inverse kinematics problem, as it is shown in the next paragraph.

CHAPTER 3. KINEMATICS AND DYNAMICS OF A ROBOTIC MANIPULATOR 23

3.2 Forward and inverse kinematics

3.2.1 Forward kinematics

Kinematics is the study of motion that deals with the subject without regard to the forces
that cause it. The direct kinematic equation allows to express the end-effector pose with
respect to the fixed reference frame as function of the joint variables. It is clear that the pose
of a body with respect to a reference frame is described by the position vector of the origin
and the unit vectors of a frame attached to the body. Thus, the direct kinematics function
is described by the homogeneous transformation matrix:

Aj
i (q) =

[
nji (q) sji (q) aji (q) pji (q)

0 0 0 1

]
(3.16)

where q is the [n× 1]T vector of joint variables, nji , s
j
i , a

j
i are the unit vectors of a frame

attached to the ith body, and pi is the position vector of the origin of such a body with
respect to the origin of the base frame j.

3.2.2 Inverse kinematics

The relationship between the joint variables and the end effector position and orientation
is described by the forward kinematics equation. On the other hand, the inverse kinemat-
ics problem consists of the determination of the joint variables corresponding to a given
end-effector position and orientation. Even though the direct kinematics is quite simple to
compute, the inverse kinematics problem is much more complex because the equation to
solve are usually nonlinear, and thus it is not always possible to find a closed-form solution.
A second problem is due to the fact that multiple solutions may exist or even infinite so-
lution may exist in the case of redundant manipulators. Closed-form solutions, it might be
appropriate to resort to numerical solution techniques; these clearly have the advantage of
being applicable to any kinematic structure, but in general they do not allow computation
of all admissible solutions.

In the following some approaches to solve the inverse kinematic problem are briefly intro-
duced for both non redundant and redundant manipulators. When necessary in this thesis
though, the inverse kinematic solution has been computed formulating the problem as non
linear optimization problem, as shown next.

Differential inverse kinematic for non redundant manipulators

Geometrical jacobian finds a relationship between the joint velocities and the corresponding
end-effector twist. That suggests the possibility to utilize the differential kinematics equation
to face the inverse kinematics problem when we deal with non redundant manipulator with
full-rank jacobian. The joint trajectory q(t), q̇(t) that reproduces the given trajectory can

CHAPTER 3. KINEMATICS AND DYNAMICS OF A ROBOTIC MANIPULATOR 24

be resolved considering equation (3.15) for a non redundant manipulator. In fact, the joint
velocities can be obtained via simple inversion of the jacobian matrix.

q̇ = J−1(q)ve (3.17)

If the initial manipulator posture is known, joint positions can be computed by integrating
velocities over time. The integration can be performed in discrete time by resorting to
numerical techniques, like the Euler integration method.

Differential inverse kinematic for redundant manipulators

A redundant manipulator is described by a rectangular jacobian matrix, which has more
columns than rows and determines infinite solutions to the inverse kinematic problem. A
possible solution method is to formulate the problem as a linear constrained optimization
problem [20] that minimizes the quadratic cost function of joint velocities:

g(q̇) =
1

2
q̇TWq̇ (3.18)

where W is a square symmetric positive definite weighting matrix. The Lagrange mul-
tiplier method is a suitable approach to solve that problem. More detailed information for
both methods discussed so far are available here [20].

Inverse kinematic as nonlinear optimization problem

The inverse kinematic problem becomes quite tricky when the manipulator has some degrees
of redundancy. In that case, a good idea would be solving that problem writing it as a
nonlinear optimization problem. We look for a manipulator configuration q ∈ Rn that
minimizes the cost function:

||ep|| = wp||pOE − pref ||+ wR||R0
E −Rref || (3.19)

where pOE and RO
E are the end effector position vectors and rotation matrix obtained from

the forward kinematics and function of the configuration vector q, whereas pref and Rref

are the desired end effector position and rotation matrix. The norm of the rotation matrix
is computed as:

||R0
E −Rref || = ||R|| = tr(RR) =

∑
i,j

Ri,jRi,j (3.20)

The optimization problem to solve can be hence summarized as:

minimize
q ∈ Rn

||ep||

subject to

qlb ≤ qk ≤ qub (Joint limits)

(3.21)

CHAPTER 3. KINEMATICS AND DYNAMICS OF A ROBOTIC MANIPULATOR 25

3.3 Forward and inverse dynamics

Derivation of the dynamic model of a manipulator has an important role for motion simu-
lation and analysis of manipulator structures. The analysis of the dynamic model can be
helpful for the computation of the forces and torques required for the execution of typical
motions. There are essentially two methods to compute the dynamic equation of motion
of a manipulator, the first method is based on the Lagrange formulation, whereas the sec-
ond method is based on the Newton–Euler formulation and yields the model in a recursive
form; it is computationally more efficient since it exploits the typically open structure of the
manipulator kinematic chain. Both Lagrange formulation and Newton–Euler formulation
allow the computation of the relationship between the joint torques and the motion of the
structure:

M(q)q̈ +C(q, q̇)q̇ + g(q) + JTW = τ (3.22)

where τ is a vector of robot joint torques, q is a vector of joint angles, J is Jacobian
matrix of robotic arm, M is mass matrix, C is Coriolis and centrifugal matrix, g is gravity
vector and W is the force that the robot exerts on the environment.

In the study of dynamics, it is relevant to find a solution to two kinds of problems
concerning computation of direct dynamics and inverse dynamics. The forward dynamics
problem consists of determining, for t > t0, the joint accelerations q̈(t) resulting from the
given joint torques τ (t) and the possible end-effector forces W(t). The inverse dynamics
problem consists of determining the joint torques τ (t) which are needed to generate the
motion specified by the joint accelerations q̈(t), velocities q̇(t), and positions q(t), once the
possible end-effector forces W(t) are known.

3.4 Statics

The goal of statics is to determine the relationship between the generalized forces applied
to the end-effector and the generalized forces applied to the joints with the manipulator at
an equilibrium configuration. Let τ denote the vector of joint torques and W the vector of
end-effector forces, a manipulator is in equilibrium configuration when the joint accelerations
q̈ and joint velocities q̇ are zero. Substituting that condition in equations (3.22), we obtain:

τ = JT (q)W + g(q) (3.23)

stating that the relationship between the end-effector forces and the joint torques is
established by the transpose of the manipulator geometric Jacobian.

26

Chapter 4

Fatigue aware NMPC for bimanual
heavy manipulation

This chapter aims at formalizing the optimal control problem for fatigue aware robotic heavy
manipulation. Section 4.1 describes the fixed-base bi-manual manipulator model utilized in
the optimization as well as the choice of state and control variables. Section 4.2 introduces
the choice of optimization variables that are optimized by the proposed solver in order to
minimize the cost function described in Section 4.3 and to respect the constraints presented
in Section 4.4. Finally, in Section 4.6 the complete optimal control problem is exploited to
define the model predictive controller.

4.1 Problem statement

In Chapter 1, we discussed the benefits of human-centred robots in role of support in disaster-
response missions and we introduced one of the problems those platforms are subject to: the
thermal fatigue. In order to address this problem in the context of a heavy manipulation
task, this work proposes to use an optimal control approach. Our target platform is a fixed
base dual-arm manipulator as in Figure 4.1. In the following, the system dynamic and all the
main components that characterize the optimal control problem are introduced. Its solution
will produce a physical consistent and thermal bounded manipulation.

4.1.1 Dual arm manipulator dynamic model

The dynamic model allows to compute the rate of change of the system state given its current
state value x(t) ∈ Rn plus the value of the control input u(t) ∈ Rk. This relationship is
modeled with an ordinary differential equation (ODE):

ẋ(t) = f(x(t),u(t)) (4.1)

Since this relation depends on the state variable x(t) and on the physical quantity con-
sidered as input u(t), it is necessary to discuss them.

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 27

0

LR

Fixed frame

Figure 4.1: Bimanual manipulator model

The left and right arm configuration of the bimanual manipulator in Figure 4.1 are respec-
tively described by the joint angle vectors qL ∈ RnL and qR ∈ RnR . Therefore, the system
can be completely described through the generalized coordinates q ∈ Rn, where n = nL+nR.

q =

[
qL
qR

]
(4.2)

Considering the dual arm manipulator as a collection of rigid bodies connected through
actuated joints, we can describe the relationship between the torque τ (t) ∈ Rn acting at
each joint and the corresponding motion thanks to the equation:

M(q)q̈ +C(q, q̇)q̇ + g(q) + JTW = τ (4.3)

where J ∈ R2m×n is the geometric Jacobian matrix of the manipulators and m=6 in that
specific case. The symmetric positive definite M ∈ Rn×n is the inertia matrix. C ∈ Rn×n

is the Coriolis and centrifugal matrix, g ∈ Rn is the vector of torques due to gravity and
W = [WLWR]T ∈ R2m is the wrench vector of forces and torques the robot exerts on
the environment. From (4.3), a more simplified dynamic representation can be obtained
considering a quasi-static assumption (4.4). Quasi-static means that at a given instant in
time we assume the problem to be static. It works well when inertial effects are very low:

q̈(t) ≈ 0 (4.4)

This assumption is needed to simplify as much as possible the system dynamics which
is necessary since the computation time plays a critical role in MPC problems. In fact, the
MPC solves at each time stamp an optimal control problem and that should be done in as

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 28

little time as possible. There is also another reason why that assumption can be accepted,
and it is related to the actuator thermal dynamics. The actuators thermal dynamics, in fact,
is generally much slower than the robot dynamics and it can be considered predominant.
Thus, assuming that (4.4) holds, the equation (4.3), becomes:

C(q, q̇)q̇ + g(q) + JTW = τ (4.5)

4.1.2 State and control variables

In order to take into account the robot thermal fatigue, to fully describe the double manipu-
lator state we need to monitor also the joint temperatures evolution in time. That suggests
to define the state variable x(t)∈ R2n as:

x =

[
q
T

]
(4.6)

where T(t) ∈ Rn is the joint temperature vector. As far as the control variable is
concerned, since the (4.4) holds, a convenient choice is to control the dual arm manipulator
platform in joint angle velocity q̇. Thus, we define:

u = q̇ (4.7)

4.2 Optimization variables

The optimal control solution minimizes the objective function, which is introduced in Section
4.3, optimizing over a vector of optimization variables. In this section, we identify that set of
variables that depends on the method utilized to solve the optimal control problem. Among
the three different methods introduced in Chapter 2, this thesis utilizes the direct multiple
shooting method which discretizes both control and state of the system. Because of that,
and since the bimanual manipulator system in Figure 4.1 under the quasi-static approach
is controlled in joint angle velocity, out first optimization variables are the state vector x(t)
and the joint velocity vector q̇(t). Another optimization variable is the wrench vector at each
contact point, where the manipulator exchanges forces and torques with the environment,
as:

Wi =


Fix
Fiy
Fiz
Mix

Miy

Miz

 for i ∈ {L,R} (4.8)

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 29

In this study though, we considered the robot capable of exchanging only forces at the
contact points, which are fixed on the payload and defined as global variable in the fixed
frame. Therefore, we introduce in the optimization vector the force components of each
contact point, the first one being the left end-effector and the second one, the right end-
effector.

Fi =

FixFiy
Fiz

 for i ∈ {L,R} (4.9)

To conclude, it is possible to identify the optimization variable vector as:

w =


x(t)
u(t)
FL(t)
FR(t)

 (4.10)

4.3 Cost function formulation

The cost function is the measure of the process behavior over the prediction horizon that
is minimized with respect to the optimization variables. It is composed of a sum of tasks
Yi, each one weighted with wi according to its relevance in the optimization problem. In
addition to that, it is a common practice to add regularization terms in the cost function.
In mathematics, regularization is the process of adding information in order to solve an ill-
posed problem. Moreover, with regularization we try to impose a certain behaviour to the
final solution. Therefore, regularization terms on the joint velocities and on the forces at the
contact are introduces in the cost function. One important point to consider is that the cost
function weights are of high relevance, since those influence the solver in finding the optimal
solution. An example of cost function at each time step of the multiple shooting method is:

J =
n∑
i=0

wiYi(q, q̇) + wq(q̇
T q̇) + wLF (FT

LFL) + +wRF (FT
RFR) (4.11)

4.4 Constraint formulation

In the previous Sections 4.2 and 4.3, we introduced the optimization variables and we dis-
cussed the cost function. In order to complete the optimal control problem formulation, we
need to go through the problem constraints. The constraints are needed to both ensure a
physically consistent robot behaviour and to respect actuation and structure limits.

4.4.1 State and control variable limits

Recall that the control variable is the joint angle velocity q̇(t) and the state vector is rep-
resented by the joint angles q(t) and joint temperature T(t). The joint angles and joint

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 30

velocities have to be consistent with the robot capabilities in order to allow a feasible and
safe optimal trajectory. Thus, the first set of hard constraints that must be satisfied at each
multiple shooting node k is:

qLB ≤ qk(t) ≤ qUB (4.12)

q̇LB ≤ q̇k(t) ≤ q̇UB (4.13)

The temperature constraint is also mandatory to impose since we want to handle the
robot’s thermal fatigue. It is treated in the following.

4.4.2 Torque limits

According to the quasi-static assumption described at the beginning of the chapter, at each
time step the motor torque can be computed as:

C(q, q̇)q̇ + g(q) + JTW = τ (4.14)

where we recall that J ∈ R2mn is the geometric Jacobian matrix of the dual arm manipulator,
C ∈ Rn×n is Coriolis and centrifugal matrix, g ∈ Rn is gravity vector and W ∈ R2m is the
force that the robot exerts on the environment. In order to satisfy the limit imposed by
the actuators, the optimized resulting trajectory needs to satisfy torque constraints at each
multiple shooting node k, which are formalized as follows:

τLB ≤ τ k(t) ≤ τUB (4.15)

4.4.3 Joint temperature constraints

Model predictive control uses a model of the process to predict the future evolution of the
motor thermal behaviour over some finite horizon. Because of that, one of the objectives of
this thesis is to find a simple motor thermal model to use to constrain the maximum allowed
joint temperature. Thanks to its simplicity, we employ the simple brushless motor (BLDC)
thermal model described in [model˙2].

Thermal model

The thermal behaviour of the motor can be represented by a circuit similar to an electric
one. That is possible thanks to the analogy between the two fields. In the brushless servo
motor, the heat is mainly created from the stator and the thermal behaviours of the rotor
can be ignored. In Figure 4.2 the BLDC thermal model is shown. The point W represents
the winding, whose too high temperature determines motor failure, and S represents the iron
of the stator. The capacitor Cθ represents the thermal capacity of the stator. A resistance
Rθ0 represents the thermal transfer across the winding insulation to the iron. The transfer

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 31

Figure 4.2: BLCD - Equivalent electric circuit

of heat between stator and rotor is represented by a resistance Rθ1. The transfer of heat
to the surroundings is represented by a resistance Rθ2. In this analogue, the temperature is
represented by the voltage and the thermal power loss by a current source, as it is explained
in the next section. The motor winding temperature formula can be written:

Tw =
Rθ1Rθ2

Rθ1 +Rθ2

(Pc + Ps)−
Rθ1Rθ2

Rθ1 +Rθ2

Cθ
dTw
dt

(4.16)

where Tw is the winding temperature. Rθ0 is ignored. The thermal resistances and the
thermal time constant are normally given by the manufacturer or they need an identification,
as it is shown in Appendix. The thermal time constant denote by tθ is Rθ Cθ. The discrete-
time solution for equation (4.16) can be expressed as:

Tk+1 = e
−h
tθ Tk + PθkRθ(1− e

−h
tθ) (4.17)

where h is the sample time and Pθ is the total thermal loss in a brushless motor. In the
next paragraph, a method to evaluate the thermal power loss of a brushless motor is shown.

Thermal power

To use the model described above, a method to compute the thermal power generated inside
the motor is needed. The thermal power must be calculated in real time in order to predict
the transient temperature. The major loss in the brushless servo motor is given by the
copper loss which is Pc = RaI

2
a . Other losses include the windage and mechanical losses and

eddy-current losses, which can be approximated as proportional to the square of the speed.
Hence a resistance denoted by Rh can be placed in the motor equivalent circuit as shown
in Figure 4.3. In this circuit analogy, the velocity is represented by the back EMF, E. The
power loss can be obtained as:

Ps =
E2

Rh

(4.18)

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 32

Figure 4.3: BLCD - Thermal power circuit

Since the motor current is strictly related to the motor torque τ through a motor constant
Km, and the rotational speed is q̇, the total thermal power loss of the brushless motor can
be computed as function of the optimization variables defined above:

Pθ = Pc + Ps = RaI
2
a +

E2

Rh

= Ra
τ 2

K2
m

+
q̇2

Rh

(4.19)

where Pc is copper loss, Ps is the losses related to speed, Rh is the equivalent thermal loss
resistance, Ra is the equivalent DC armature resistance, Ia is the equivalent DC armature
current and R1 is an equivalent resistance representing the variable mechanical load. Sub-
stituting eq.(4.19) in eq.(4.17), it is possible to define the thermal model that will be used
to impose the thermal constraint:

Tk+1 = e
−h
tθ Tk + (Ra

τ 2
k

K2
m

+
q̇2
k

Rh

)Rθ(1− e
−h
tθ) (4.20)

Considering that the joint torques are computed through the eq.(4.14) and are function
of q(t) and q̇(t), the temperature integration, eq.(4.20) at the next step, can be written as:

Tk+1 = fint(qk, q̇k, Tk) (4.21)

Then at each time sample this formula is used to predict the motor power consumption and
above that temperature constraint can be defined:

Tk+1 ≤ Tbound (4.22)

4.4.4 End-effector constraints

To guarantee a correct payload manipulation we need to ensure a constant end-effectors
relative pose. This constraint allows the double arm manipulator to grasp the payload for
all task execution, avoiding its fall. In this work two methods are proposed to impose such
constraint:

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 33

• Relative pose constraint. These constraints impose a fixed orientation and end-
effector relative position during all the manipulation task.

• Relative twist constraint. Those constraints impose a zero relative twist (linear and
angular relative velocity) between the two end-effectors during all the manipulation
task.

Figure 4.4 shows a dual arm manipulator platform and the necessary mathematical quan-
tities to define the aforementioned constraint. It is possible to identify three reference frames:
the fixed world reference frame {O}, the left end-effector reference frame {L} and the right
end-effector reference frame {R}.

LR

0

J
R

J
L

p R
R R

0 0 p R
L L

0 0

p R
R R

L L

Figure 4.4: Dual arm manipulator platform

RELATIVE POSE CONSTRAINT

A relative pose constraint aims at ensuring a constant end-effectors distance and a fixed rel-
ative orientation. Thus, we split the relative pose constraint in relative position constraint
and relative orientation constraint.

Relative position
In order to fix a relative position between end effectors, it is possible to require that the vector
pRL , which represents the position of the left end-effector in the right end-effector reference

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 34

frame, constant for all the manipulation period. Given the left end effector position in world
frame p0

L, it is possible to express it in the right end effector reference frame according to
the homogeneous transformation matrix TR

0 :

pRL = TR
0 p0

L (4.23)

where the homogeneous transformation matrix:

TR
0 =

[
(R0

R)T −(R0
R)T p0

R

0T 1

]
(4.24)

Since we want such position to be constant during the problem evolution, we impose its
derivative equal to zero. In discretized form, we assess the following constraint:

pRLk+1 − pRLk = 0 (4.25)

Relative orientation
Once the relative position is imposed as (4.25), we need something that ensures the end-
effector relative orientation does not change while the robot manoeuvres the payload. In
literature, it is common to define the orientation error between two frames once the rotation
matrices R1 R2 are given. The orientation error can be computed as:

eo = [S(R1 RT
2)]v (4.26)

where S() represents the skew operator and []v is the operator that extracts the three
components from the skew matrix. By definition, it is possible to compute the skew matrix
of a general matrix R as:

S(R) =
R−RT

2
(4.27)

In our case, the orientation task can be fulfilled given the two end effectors rotation matrix
R0
L, R0

R. We first compute the initial orientation error eo(0) according to 4.26. Then, and at
each time stamp k of the discretized time evolution, we compute the configuration dependent
orientation error eo(k) and impose:

eok − eo0 = 0 (4.28)

RELATIVE TWIST CONSTRAINT

There is a second method to impose relative position and orientation constraint and this is
obtained by imposing relative twist between end-effectors equal to zero.

Jrq̇ = 0 (4.29)

The relative linear and angular velocity can be imposed thanks to the relative jacobian,
Jr, as it is explained in [21]. Figure 4.4 shows a dual-arm robot with its corresponding

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 35

reference frames {0}, {L}, {R} and Jacobians JL, JR used in the derivation of the relative
Jacobian. In fact, as it is explained below, the relative Jacobian can be expressed in terms
of the individual manipulator Jacobians.

It is possible to express the relative linear and angular velocities between the two end-
effectors as: [

ṗLR
ω̇LR

]
=

[
−RL

0 JpLq̇L + S(pLR) RL
0 JoLq̇L + RR

0 JpRq̇R
RL

0 JoLq̇L + RR
0 JoRq̇R

]
(4.30)

where:

• Rj
i is the rotation matrix of frame i in frame j

• Jpi represents the first three rows of the Jacobian i

• Joi represents the last three rows of the Jacobian i

• S(pij) is a skew-symmetric matrix with input pij

• I is an identity matrix

The relative twist can be rewritten as:[
ṗLR
ω̇LR

]
=

[
−RL

0 JpL + S(pLR) RL
0 JoL RR

0 JpR
RL

0 JoL RR
0 JoR

] [
q̇L
q̇R

]
(4.31)

[
ṗLR
ω̇LR

]
=

[[
I −S(pLR)
0 I

] [
−RL

0 0
0 −RL

0

] [
JpL
JoL

] [
−RL

0 0
0 −RL

0

] [
JpR
JoR

]] [
q̇L
q̇R

]
(4.32)

That allows us to write a more compact form of the relative jacobian, Jr:

Jr =
[
−ψL

R ω
L
0 JL ωL0 JR

]
(4.33)

where:

ψL
R =

[
I −S(pLR)
0 I

]
ωL0 =

[
−RL

0 0
0 −RL

0

]
(4.34)

The wrench transformation matrix ψL
R contribution in the relative linear velocity can be

negligible when the rotational velocity of the left end-effector is close to zero. It is clearly
seen that in order to derive the relative jacobian Jr using the proposed method, one only
needs to derive the wrench transformation matrix ψL

R and the rotation matrix ωLR, then
incorporate the Jacobians of the standalone manipulators JL and JR to form the relative
Jacobian Jr.

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 36

4.4.5 Payload manipulation constraints

The relative pose constraints are imposed to hold the payload along the task period. In addi-
tion to that constraint, in order to have a physical consistent manipulation, the manoeuvred
object has to be subject to reasonable forces and moment to be moved in space. Pretending
to see the payload as a box, Figure 4.5, it means that Newton and Euler equations (4.36)
need to be satisfied and imposed as hard constraints at each multiple shooting node k :

Figure 4.5: Payload free body diagram

{
FL + FR −mg = macm

rL × FL + rR × FR = Iω̇cm
(4.35)

where m is the payload mass, I is the moment of inertia matrix, acm is the center of mass
acceleration and ω̇cm is the angular acceleration. Because of the quasi-static assumption
mentioned in (4.4), those two equations are simplified, at each time step, as:

{
FL + FR −mg = 0

rL × FL + rR × FR = 0
(4.36)

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 37

4.4.6 Friction Cone

The contact forces must meet friction cone constraints in order to prevent payload/end-
effector slippage. In order to keep the hand away from slipping on the payload, the tangential
local forces must be smaller than the normal force times the static coefficient of friction. In
this thesis, the lateral force in the tangential plane will be required to independently satisfy
the condition. An additional requirement is that only positive normal force can be applied
in order to grasp the object.

Friction cone theory - Coulomb friction

Referring to the Figure 4.6, we can state that a contact will remain fixed as long as the
contact force fC = mg − Fext lies within the Coulomb friction cone C. As soon as fC exits
C, the contact switches to the sliding mode.

Figure 4.6: Theory of friction cone

The property fC ∈ C is called the contact-stability condition for the contact mode: as
long as it is fulfilled, the contact remains fixed. Consider the set of points Ci where the robot
contacts its environment. Once we introduce fCi as the contact force exerted at Ci by the
environment onto the robot and the unit normal ni at Ci, pointing from the environment to
the robot, we can define:

• the normal component fni = (ni · fCi)ni.

• the tangential component fti = fCi − (ni · fCi)ni.

A contact point remains in the fixed contact mode while its contact force fCi lies inside
the friction cone:

(fCi · ni) > 0 and ||fti||2 ≤ µi(ni · fCi)ni (4.37)

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 38

where µi is the static friction coefficient at contact Ci. The Euclidean norm|| · ||2 in
this definition represents friction cones with circular sections. Although more realistic, this
model presents some computational challenges and a common practice is to consider its
linear approximation, Figure 4.7. A contact point remains in the fixed contact mode while
its contact force fCi lies inside the linearized friction. This approximation can be made

Figure 4.7: Linearized friction cone

as close as desired to the original one by increasing the number of edges n of the section
polygon. For example, the four-sided friction pyramid in Figure 4.7 obtained can be written:

fCi · ni > 0
|fCi · ti| ≤ µi (fCi · ni)
|fCi · bi| ≤ µi (fCi · ni)

(4.38)

with (ti,bi) any basis of the tangential contact plane such that (ti,bi,ni) is a direct frame.

Friction cone constraints definition

Let’s pretend the payload to be a box as it is shown in fig.(4.8). The manipulator applies
forces at the contact points OL and OR. In order to derive the matrix formulation of the
friction cone constraint, we define the normal vectors nL,nR on the box expressed in the
local frames (xL,yL, zL) and (xR,yR, zR), pointing from the environment to the robot. Then
we construct two frames, (tL,bL,nL) and (tR, bR,nR), based on the normal vector defined
previously. Then, we project such versors in the local frame {L}, {R}. At the contact point
OL:

tL =

0
0
1

 bL =

1
0
0

 nL =

0
1
0

 (4.39)

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 39

Figure 4.8: Payload friction cone

The force versors in the local frame at the second contact point OR:

tR =

1
0
0

 bR =

0
0
1

 nR =

 0
−1
0

 (4.40)

We now consider FC
Ll

, FC
Rl

, which are the local contact force exerted in the contact point
by the environment onto the robot. We need to express those force as function of the force
optimization variable of the problem, which are force expressed in the global reference frame
and defined as the force that the robot exert on the environment. Said that we need to
change the sign to the global variable and move them in the contact point local frame:

FC
Ll

= −RL
0 FL (4.41)

FC
Rl

= −RR
0 FR (4.42)

Knowing that it is now possible to express the linearized constraints (4.38) in the form
of (4.43):

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 40

Oi ∈ [L,R]


FC
il
· ni > 0∣∣F C
il
· ti
∣∣ ≤ µ (FC

il
· ni
)∣∣F c

il
· bi
∣∣ ≤ µ (F C

il
· ni
) (4.43)

which can be rewritten in matrix form as follow, once the (4.41),(4.42) are substituted:

At contact point OL :


0 −1 0
0 −µ 1
0 −µ −1
1 −µ 0
−1 −µ 0

FC
Ll

= −


0 −1 0
0 −µ 1
0 −µ −1
1 −µ 0
−1 −µ 0

RL
0 FL = cLFL (4.44)

At contact point OR :


0 1 0
1 µ 0
−1 µ 0
0 µ 1
0 µ −1

FC
RL

= −


0 1 0
1 µ 0
−1 µ 0
0 µ 1
0 µ −1

RR
0 FR = cRFR (4.45)

4.5 Resulting optimal control problem

This section resumes the concepts introduced so far and tries to obtain a complete formu-
lation of the optimal control problem. In Sections 4.2, 4.3 we discussed the optimization
variable vector w = [x, q̇,FL,FR] and the cost function. In Section 4.4 instead, in order to
obtain a physically consistent solution, all the constraints needed to hold and manipulate
the payload were analyzed. The result of the optimal control problem in 4.46 will allow the
dual arm manipulator to execute the manipulation task specified in the cost function at its
best without exceed the motor temperature bound. In fact, thanks to the thermal model
encapsulated in the OCP, the robot would be able to predict the temperature evolution and
automatically adjust the manipulation task in order to protect the more stressed joints.

Equation (4.46) represents the discretized version of the continuous optimal control and
it is obtained exploiting the multiple shooting transcribing method discussed in Chapter 2,
discretizing the time horizon th in N multiple shooting nodes.

One may notice that the relative pose constraint is imposed fixing the relative end effector
position and orientation error. This approach is chosen over the relative twist constraint.
That is because in order to solve the optimal control problem as fast as possible, the simulated
time horizon is discretized over a limited number of steps N. Having a large time step would
introduce the drift phenomena in case of relative twist constraint.

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 41

min
q,T, q̇,FL,FR

N∑
k=0

n∑
i=0

wiYi(qk, q̇k,Fk) + wq(q̇k
T q̇k) + wF

∑
i∈{L,R}

(FT
ik

Fik)

s.t. x0 = xini (Initial conditions),

q̇0 = q̇ini (Initial conditions),

qlb ≤ qk ≤ qub (Joint limits),

q̇lb ≤ q̇k ≤ q̇ub (Velocity limits),

τ lb ≤ C(qk, q̇k)q̇k + g(qk) + JTWk ≤ τub (Torque limits),

FLk + FRk −mg̃ = 0 (Newton equations),

rLk × FLk + rRk × FRk = 0 (Euler equations),

pRLk+1 − pRLk = 0 (Relative position constraint),

eok − eo0 = 0 (Relative angle constraint),

ciFik ≤ 0 i ∈ [L,R] (Friction cone constraint),

qk+1 = qk + q̇k∆t (Continuity conditions),

Tk+1 = fint(qk, q̇k,Tk) (Continuity conditions),

Tk+1 ≤ Tbound (Temperature constraint)
(4.46)

4.6 Nonlinear model predictive control formulation

The optimal control problem in (4.46) generates the optimal open loop controls u(t) to send
to the robot plant. That control result in the payload manipulation specified in the cost
function and protects the joint from thermal failure. This optimal control problem is a block
of a bigger controller, which is the model predictive control. The model predictive control
was previously introduced as a method of control that utilizes a built-in descriptive model
of a system to predict its behavior. These predictions are used to refine the optimization,
anticipating future system responses. This logic is exploited to set-up a controller able to
monitor the robot fatigue while executing a heavy task manipulation. Starting from Figure
4.9, we discuss how the MPC is implemented based on the optimal control problem obtained
in the aforementioned section. The main idea is to optimize for the time horizon [tj, tj+1]
while executing the previously optimized trajectory qj, q̇j.

The reader may immediately notice that the problem is split in two parts, the initializa-
tion and the run-time part.

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 42

q(t)

u(t)

T(t)

t

u (t)

q (t)

Tm
0

Tm1

Tsim1

Tm2

Tsim2

Tsim3

0

0

u (t)
1

q (t)
1

u (t)
2

q (t)
2

Computation time

Time horizon

Optimization 1 Optimization 2 Optimization 3

t1 t2 t30

Initialization
+

Opt. solution 1
+

Opt. solution 2
+

Figure 4.9: From OCP to NMPC scheme

MPC initialization

At the beginning of the MPC we need to initialize the optimization loop. As it is possible to
spot in figure 4.9, in the first time window [0 - t1] the robot is fed with an initial trajectory
that describes the manipulation task. The joint temperature evolution in blue is predicted
thanks to the thermal model specified in section 4.4. The temperature evolution prediction
starts from the temperature measurement Tm0 and its result is used as initial condition in
the successive time horizon optimization. In fact, while the robot executes the trajectory
q0(t), the optimization for the next time windows starts. Such optimization uses as initial
condition the state vector:

x1(t1) =

[
q1(t1)
T1(t1)

]
=

[
q0(t1)

fint(q0(t), u0(t), Tm0)

]
(4.47)

where fint(·) is thermal model (4.20) that simulate the new initial temperature state at
t1 starting from the new measurement and the previously optimized trajectory. Once the
first time horizon [0, t1] trajectory has been completely executed, the plant is fed with the
new optimized trajectory obtained by the previous optimization. As soon as it starts, a new
joint temperature measurement is taken and a new optimization problem for the successive
time horizon is solved.

CHAPTER 4. FATIGUE AWARE NMPC BIMANUAL HEAVY MANIPULATION 43

Run-time optimization

Once the j optimization has been solved and the j-1 trajectory has been completely executed,
we start in parallel the following processes:

• Measure the joint temperature Tmj from sensors.

• Send the j optimization problem output to the plant.

• Start the j+1 optimization problem based on the initial state:

xj+1(tj+1) =

[
qj+1(tj+1)
Tj+1(tj+1)

]
=

[
qj(tj+1)

fint(qj(t), uj(t), Tmj)

]
(4.48)

Computation time

In Figure 4.9, one may notice the main computation time constraint that must be respected.
The aforementioned approach is suitable only if each optimal control problem computation
time is smaller than the time horizon we optimized for. In order to achieve such result, we
may take advantage of some techniques.

Warm starting
The warmstarting is a technique that can speed up the optimal control problem solution
and it consists in supplying an initial guess to the nonlinear problem solver. The first reason
why it helps is that the solver has a vague idea about where the solution to a non-convex
problem is, and want to start the search in that region. The second reason is that the prob-
lem involves singularities and generally tricky regions, and we want to ensure that the solver
does not try to start there.

Reduce constraint tolerances
In order to speed up the solver one may think to reduce of some orders of magnitude the
constraint tolerance. It turned out to be very effective and to result in a drastical reduction
of the solver computation time.

Parameters dependency
The performance of many hard non-convex problem solvers strongly depends on their pa-
rameter settings. In our case, the main parameters that influence the solver are the multiple
shooting node, the cost function weights, the simulated time horizon. At each set-up we
need to find empirically the best value that allows the real-time optimization.

44

Chapter 5

Validation

This Chapter provides details of the proposed NMPC implementation and summarizes the
simulation and experimental results. Section 5.1 and Section 5.2 give a description of the
CENTAURO robot platform, and the exploited software framework which relies on CasADi,
Pinocchio and the robotic operating system (ROS). Section 5.3 shows the NMPC controller
implementation in the ROS environment whose results are finally discussed in Section 5.4
with the robot performing two heavy manipulation tasks.

5.1 The CENTAURO platform

Figure 5.1: Cen-
tauro robot

The proposed NMPC approach is evaluated on the CENTAURO robot
platform, which is the result of a four years project involving, among
other partners, the Italian Institute of Technology (IIT). The robot,
presented in Figure 5.1, has been designed with the purpose of accom-
modating the needs of real-world applications with high payload and
harsh physical interaction demands like in disaster-response scenarios.
It combines powerful manipulation capabilities with a more reliable
quadrupedal hybrid wheeled-legged locomotion concept. The upper
body shape was suggested by the need of performing bi-manual tasks
as humans do, thus the upper body dimensions are set to approxi-
mately resemble the average human size. The locomotion profile of
the robot, on the other hand, relies upon a quadrupedal lower-body to
enable higher balancing capacity to deal with a wide variety of terrain
conditions.

CHAPTER 5. VALIDATION 45

5.1.1 Hardware description

The two arms show a quasi-anthropomorphic kinematics, see Figure 5.2. Each arm has 7-
DoFs that enable the robot to manipulate the environment with large dexterity, providing
also one degree of redundancy to overcome constraints that the arm may be subject to. It
incorporates a 3-DoFs shoulder complex, an elbow joint and a 3-DoFs wrist module. The
shoulder follows a typical pitch-yaw-roll structure, whereas the wrist employs a yaw-pitch-
yaw arrangement.

Figure 5.2: Centauro robot arm

The CENTAURO legs, shown in Figure 5.3, incorporate 5-DoFs each, with three upper
joints organized in a yaw–pitch–pitch configuration and two lower joints for wheel orientation
and steering. Since the spider-like case demonstrates benefits of reduced joint effort, the first
3 DoFs are arranged using a spider-like hip configuration. That, in fact, can provide better
stability when executing manipulations with high payloads and interaction forces.

The robot pelvis accommodates the hip yaw actuator of each leg, and houses the robot
battery, power distribution electronics, and a computation unit arranged with high-performance
GPU responsible for system high level control and motion planning. The robot torso is
mounted to the pelvis through a yaw joint permitting the rotation of the upper-body in the
transverse plane.

5.1.2 Software description

The XBotCore framework [22] has been employed as a control framework. XBotCore is an
open-source, real-time, platform independent software which does not only function as the
robot software middleware, but it also handles the robot real-time (RT) control schemes.
This software makes it possible to seamlessly program and control any robotic platform
while providing a canonical abstraction that hides the specifics of the underlying hardware.
Cartesian space motion is performed by the CartesI/O motion library [23], which can consider
multiple Cartesian tasks and constraints under hard/soft priorities.

CHAPTER 5. VALIDATION 46

Figure 5.3: Centauro robot leg

5.2 Tools overview

The NMPC algorithm introduced in Chapter 4 is implemented using several softwares. For
instance, the robot dynamics is computed thanks to the Pinocchio library whereas the opti-
mal control problem is transcribed to a nonlinear problem and then solved using the CasADi
framework. The whole algorithm, instead, is developed in the ROS environment. The next
paragraphs will briefly introduce these tools.

5.2.1 CasADi

CasADi [24] is a free, open-source, general purpose software tool for nonlinear optimiza-
tion and analytical differentiation. It is best described as a minimalistic computer algebra
system (CAS) implementing automatic differentiation (AD)1. It is mainly used to model
and solve optimization problems in a flexible, interactive and numerically efficient way. It
is written in C++ and thanks to a full-featured interface it is very easy to use in Python
programming language. Thanks to its simplicity, it has been used successfully in multiple
fields ranging from process control to robotics and aerospace. It facilitates rapid and ef-
ficient implementation of different methods for numerical optimal control and for NMPC.
CasADi treats optimal control problems using a different approach with respect to other
existing tools because rather than providing the end user with a black box OCP solver, it

1Automatic differentiation (AD), is a technique for evaluating derivatives of computer represented func-
tions, which has proved useful in nonlinear optimization.

CHAPTER 5. VALIDATION 47

provides a framework that allows advanced users to implement their method of choice, with
any complexity. One of its main advantages is that everything is a matrix and all matrices
are sparse and stored in the compressed column format (CSS) which helps to save a sig-
nificant amount of memory and speed up the processing of that data. This work exploits
CasADi to transcribe the fatigue aware heavy manipulation optimal control problem into a
nonlinear problem writing a multiple shooting method and then solving it using an interior
point nonlinear solver.

5.2.2 The Pinocchio library

Pinocchio [25] is an open-source software framework that implements fast and flexible rigid
body dynamics algorithms and their analytical derivatives. It has been written in C++ for
efficiency reasons and uses the Eigen library 2 for linear algebra routines. Pinocchio does
not only include standard algorithms employed in robotics but it also provides additional
features essential for control, planning and simulation of a robotic system. In this works
Pinocchio was used to compute the symbolic formulation of the forward kinematic and the
inverse dynamics given the robot Unified robot description format (URDF). The URDF file
describes the parts that compose the robot and the way they are connected through joints.

5.2.3 ROS - Robotic Operating System

ROS (Robot Operating System) is an open-source Linux-based reusable robotic middleware
that allows to program robotic applications quickly and easily. Figure 5.4 shows the standard
architecture of the ROS software system, which consists of libraries, packages and software
modules encapsulated as nodes, including the master node and functional nodes. The master
node administrates and monitors the running of the functional nodes and their peer-to-peer
communications. Each node represents a single running process and together they are at
the center of ROS programming since they take actions based on information received from
other nodes, sends information to other nodes, or sends and receives requests for actions
to and from other nodes. Topics are buses over which nodes send and receive messages.
To send messages to a topic, a node must publish to said topic, while to receive messages
it must subscribe. The types of messages passed on a topic vary widely and can be user-
defined. The content of these messages can be sensor data, motor control commands, state
information, actuator commands, or anything else. A node may also advertise services. A
service represents an action that a node can take which will have a single result. ROS’s
core functionality is augmented by a variety of tools that allow developers to visualize and
record data, easily navigate the ROS package structures, and create scripts automating
complex configuration and setup processes. The addition of these tools greatly increases
the capabilities of systems using ROS by simplifying and providing solutions to a number of

2Eigen is a high-level open-source C++ library for linear algebra, matrix and vector operations and
related algorithms.

CHAPTER 5. VALIDATION 48

Figure 5.4: Robotic operating architecture

common robotics development. These tools are provided in packages like any other algorithm,
but rather than providing implementations of hardware drivers or algorithms for various
robotic tasks, these packages provide task and robot-agnostic tools which come with the
core of most modern ROS installations.

5.3 Model predictive control in ROS

Chapter 4 introduced the model predictive controller logic based on the optimal control
problem, whose solution describes fatigue aware heavy manipulation task over a fixed future
time horizon. Recall that the NMPC simultaneously solves the jth optimal control while
sending the j-1th optimized trajectory to the real robot. This thesis exploits ROS to develop
an application that performs both tasks together. More precisely the nonlinear model pre-
dictive controller execution is based on two ROS nodes, the Optimal control node and the
Interpolator node, see Figure 5.5. The first one computes the future optimal controls while
the second sends in real-time the trajectory optimized at the previous step.

Optimal control node

It solves the optimal control problem with prediction horizon th transcribing the optimal
control to a nonlinear problem according to the direct multiple shooting method. Then, the
NLP is passed to the IPOPT solver that finds the optimal solution. The computation time
required to solve the optimal control problem has to be shorter than the prediction horizon
it optimizes for, tc < th. To respect this constraint, the node takes advantage of the slow
motor thermal dynamics optimizing over a large prediction horizon using a limited number
of multiple shooting nodes. Once the optimal solution is found it waits that the interpolator
node has sent all the previous trajectory to the robot plant and then it publishes the new
trajectory to the interpolator node, takes a new motor temperature measurement and starts
to solve a new optimal control problem.

CHAPTER 5. VALIDATION 49

Optimal control

node

Real robot plant

Interpolator

node

Shared

Timer

Future optimized controls

R
e
a
l-
ti
m

e
 c

o
n
tr

o
ls

M
o
to

rs te
m

p
e
ra

tu
re

Figure 5.5: NMPC implementation is ROS

Interpolator node

Since the optimal control node discretizes the OCP using a limited number of multiple
shooting nodes, the resulting optimized trajectory and control law are vectors of limited
dimension as well. The interpolator node, which is a subscriber of the optimal control node,
stores the trajectory received by the first node and sends its interpolated version to the real
robot plant with a certain frequency. The interpolation is done linearly and it is performed
exploiting the encapsulated ROS timer.

5.4 Experimental set-up

The proposed NMPC algorithm has been validated in two bimanual manipulation tasks.
In the first task, the robot is asked to hold a payload in a user-defined Cartesian space
position, whereas in the second test the robot holds a box and moves its center of mass
over a predefined circular trajectory. The position tasks are expressed in the world reference
frame, which is identified on the ground in the robot URDF, Figure 5.6. As it will be shown
in the following, the proposed NMPC will allow the robot to execute the tasks assigned while
adapting the robot configuration at run-time in order to prevent motor overheating.

5.4.1 Thermal model assumptions

The thermal model introduced in Chapter 4 was used to impose the thermal constraint in
the optimal control problem. Its dynamics depends on unknown parameters that need to be
properly identified. The next simulations assume values that are not the real one and leaves

CHAPTER 5. VALIDATION 50

as future work the thermal model parameter identification. Because of that assumption, the
NMPC logic explained in Chapter 4 needs to be slightly modified. In fact, to solve the j+1
optimization problem, the initial temperature conditions are not obtained by integration
of the measured temperature, but using the final temperature obtained by the previous
optimization problem:

xj+1(tj+1) =

[
qj+1(tj+1)
Tj+1(tj+1)

]
=

[
qj(tj+1)
Tj(tj+1)

]
(5.1)

5.5 Payload holding experiments

The parameters used in the payload holding test are resumed in Appendix. B.1, whereas the
CENTAURO platform limits such as joint angle and joint velocities limits are illustrated in
Appendix A. The payload holding experiment, Figure 5.6, is done exploiting three different
approaches:

• NMPC approach without temperature constraint.

• NMPC approach with temperature constraint.

• Minimum effort approach.

The three solutions are compared in order to show the benefits that the proposed approach
can bring to the thermal fatigue problem in the heavy manipulation task. The payload
holding task is assigned to the robot by defining the cost function in a proper way. The
NMPC cost function is defined as follows:

J =
N∑
k=0

wp||epk||+ wq(q̇k
T q̇k) + wf (F

T
kFk) (5.2)

where epk is the box position error with respect to the user defined holding position. The
box position is computed as the mean value of the two end effectors positions. The cost
function also considers regularization terms on the global contact forces and joint velocities.
The cost function for a minimum effort problem instead, is written similarly but it also
minimizes torques:

J =
N∑
k=0

wp||epk||+ wq(q̇k
T q̇k) + wt(τ

T
k τ k) (5.3)

5.5.1 Results discussion

The NMPC ROS application is executed three times to test the three aforementioned ap-
proaches. In all three cases, the algorithm starts with the initialization phase. While the

CHAPTER 5. VALIDATION 51

z

yx

FIXED FRAME

Figure 5.6: Payload holding task

optimal control node starts to solve the optimal control problem for the next prediction hori-
zon, the real robot platform is fed by the interpolated node with the constant pose, received
from the first node, that describes the box holding. The robot applies forces at the contact
points that allow the payload holding and that respects the friction cone constraint. These
contact forces require constant joint torque, whose value can be computed thanks to (4.14).
This results in the robot configurations depicted in Figure 5.14a, 5.14b, 5.14c whereas the
temperature evolution can be integrated with the thermal model (4.17) and used as initial
values for the next optimization, Figure 5.7.

Once the initialization phase is over, the optimal control node sends the new th optimized
control law to the interpolator node and immediately starts solving the successive optimiza-
tion problem. The interpolator node feeds the real plant with the new trajectory, which now
differ among the three problems. From Figure 5.12 and Figure 5.14d, it may be seen that
without temperature constraint the robot would continue holding the box at the position
required by the task. Doing so, as shown in Figure 5.11, it would violate the temperature
constraint on the left and right shoulder pitch and elbows. The NMPC solution that takes
into account the temperature constraint is expected to prevent that by adjusting the robot
configuration. Figures 5.12, 5.14e shows the results. The new optimized trajectory reconfig-
ures the robot posture to bound the temperature on the too stressed joints, continuing the
task execution. This result is also observable in Figure 5.8 and Figure 5.10, which depicts
the robot joint angles and torque values evolution. Thanks to the new robot configuration,

CHAPTER 5. VALIDATION 52

torques are reduced as well.

Figure 5.12 depicts the box centre of mass position evolution. The reader may notice
how the NMPC without thermal bounds executes the holding task perfectly since it has no
reason to move the box away from its initial position, whereas the problem with temperature
constraint moves at each iteration the box away from the desired reference to prevent motor
thermal burnout. In the same figures, it is also shown the comparison to a minimum effort
problem. Its result is completely different with respect to the presented NMPC approach
since the task is drastically deteriorated independently of the joint temperatures. The mini-
mum effort problems, in fact, aims at the torque reduction considering joints equally without
taking their thermal fatigue into account.

Moreover, another interesting result can be observed in Figure 5.12. The reader may
note that the robot prevents the thermal bound and tries to perform the task at its best at
each iteration of the NMPC. In fact, in the time interval [20 - 40] s the robot drastically
moves the box away from the initial position in order not to violate the thermal bound and
then, once it has found a new configuration, it moves the box towards the initial position,
minimizing the error position. The same behavior may be noticed in the time interval [60-
80], it finds a new configuration that bound the temperatures on the elbows and minimizes
the position error.

CHAPTER 5. VALIDATION 53

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

0 20

50

100

Figure 5.7: Payload holding - Joint temperatures evolution at initialization

CHAPTER 5. VALIDATION 54

20 40 60 80

-3

-2

-1

0

1

20 40 60 80

1

2

3

20 40 60 80

-2

0

2

20 40 60 80

-2

-1

0

20 40 60 80

-2

0

2

20 40 60 80

-1

0

1

20 40 60 80

-2

0

2

20 40 60 80

-3

-2

-1

0

1

20 40 60 80

-3

-2

-1

20 40 60 80

-2

0

2

20 40 60 80

-2

-1

0

20 40 60 80

-2

0

2

20 40 60 80

-1

0

1

20 40 60 80

-2

0

2

Figure 5.8: Payload holding - Run-time joint angles comparison

CHAPTER 5. VALIDATION 55

20 40 60 80

-0.5

0

0.5

1

20 40 60 80

-0.5

0

0.5

20 40 60 80

-0.5

0

0.5

20 40 60 80

-1

-0.5

0

0.5

20 40 60 80

-0.5

0

0.5

20 40 60 80

-0.5

0

0.5

20 40 60 80

-0.5

0

0.5

20 40 60 80
-0.5

0

0.5

1

20 40 60 80

-0.5

0

0.5

20 40 60 80

-0.5

0

0.5

20 40 60 80

-1

-0.5

0

0.5

20 40 60 80

-0.5

0

0.5

20 40 60 80

-0.5

0

0.5

20 40 60 80

-0.5

0

0.5

Figure 5.9: Payload holding - Run-time joint velocities comparison

CHAPTER 5. VALIDATION 56

20 40 60 80
-80

-60

-40

20 40 60 80
-20

-10

0

20 40 60 80

-30

-20

-10

20 40 60 80

-60

-50

-40

20 40 60 80
-10

-5

0

20 40 60 80
5

10

15

20 40 60 80
0

5

10

20 40 60 80
-80

-60

-40

20 40 60 80
0

10

20

20 40 60 80
10

20

30

20 40 60 80

-60

-50

-40

20 40 60 80
0

5

10

20 40 60 80
5

10

15

20 40 60 80
-10

-5

0

Figure 5.10: Payload holding - Run-time joint torques comparison

CHAPTER 5. VALIDATION 57

20 40 60 80

50

100

20 40 60 80
20

30

40

50

20 40 60 80

50

100

20 40 60 80

50

100

20 40 60 80
20

30

40

50

20 40 60 80
20

30

40

50

20 40 60 80
20

30

40

50

20 40 60 80

50

100

20 40 60 80
20

30

40

50

20 40 60 80

50

100

20 40 60 80

50

100

20 40 60 80
20

30

40

50

20 40 60 80
20

30

40

50

20 40 60 80
20

30

40

50

Figure 5.11: Payload holding - Run-time joint temperatures comparison

CHAPTER 5. VALIDATION 58

2
0

4
0

6
0

8
0

0
.4

0
.6

0
.8

1 2
0

4
0

6
0

8
0

-0
.5

0

0
.5

2
0

4
0

6
0

8
0

0
.8

0
.9

1

1
.1

1
.2

Figure 5.12: Payload holding - Run-time box position comparison

CHAPTER 5. VALIDATION 59

20 40 60 80

30

35

40

45

50

55

20 40 60 80

-150

-140

-130

-120

-110

-100

-90

20 40 60 80

-40

-30

-20

-10

0

10

20 40 60 80

30

35

40

45

50

55

20 40 60 80

90

100

110

120

130

140

150

20 40 60 80

-40

-30

-20

-10

0

10

Figure 5.13: Payload holding - Run-time local contact forces comparison

CHAPTER 5. VALIDATION 60

(a) No temp const. t=20s (b) Temp const. t=20s (c) Minimum effort t=20s

(d) No temp const. t=40s (e) Temp const. t=40s (f) Minimum effort t=40s

(g) No temp const. t=60s (h) Temp const. t=60s (i) Minimum effort t=60s

(j) No temp const. t=80s (k) Temp const. t=80s (l) Minimum effort t=80s

Figure 5.14: Payload holding - Configurations evolution

CHAPTER 5. VALIDATION 61

5.6 Payload circular trajectory experiment

The parameters used in the payload holding test are resumed in Appendix. B.2, whereas the
CENTAURO platform limits such as joint angle and joint velocities limits are illustrated in
Appendix A. The NMPC solution is compared to the solution of the same problem without
thermal constraints. The task is assigned to the robot by defining the cost function as
follows:

J =
N∑
k=0

wp||epk||+ wo||eok||+ wq(q̇k
T q̇k) + wf (F

T
kFk) (5.4)

where epk is the box position error with respect to the reference position pref at the kth

multiple shooting node. The reference position changes at each multiple shooting nodes and
it is computed, starting from the box initial position pini = [xini yini zini]

T , by discretizing
the circular path on N points.

z

Figure 5.15: Circular trajectory to track

pref =

 xini
yini +R cos(2πk

N
)

zini +R sin(2πk
N

)

 (5.5)

Instead, eok is the box orientation error with respect to initial box orientation, express
as RPY. Then, additional terms are regularization terms on the joint angles velocities and

CHAPTER 5. VALIDATION 62

global contact forces.

5.6.1 Result discussion

The NMPC ROS application starts with the initialization phase, which is the same as the
payload holding problem; while the optimal control problem for the next prediction horizon
is solved, the interpolator node feeds the robot to hold the box at its initial position. This
task requires certain torque at the joint, Figure 5.18, which determines the motor heat up
as shown in Figure 5.19.

Once the initialization phase is over, thanks to the recursive optimization problem solu-
tion the robot starts following the circular reference trajectory, as it might be seen in Figure
5.20. To execute the task the robot develops the torques in Figure 5.18 that contribute,
together with the joint velocities in Figure 5.17, to heat up the left and right shoulder pitch.
Figure 5.20, shows that both the temperature constrained and not temperature constrained
optimal solution let the robot executing the required task until the 6th NMPC iterations.
According to Figure 5.19 the left and right would pass the bound after 100 seconds per-
forming this task. The controller indeed intervenes modifying the robot configuration at
run-time, moving the box closer to its pelvis and reducing the torque on the shoulder pitch
and compensating with the two elbows, Figure 5.18. Figure 5.20 shows how the robot is
able to continue performing the task finding a trade-off between thermal bound and task
execution. Figures 5.23b, 5.23c depicts the difference between the two solutions, with the
second one that continues performing the task with the box closer to the shoulders.

The same conclusion can be draw looking at Figure 5.16, which describes the joint angles
evolution in both cases. As far as the end effector forces are concerned, Figure 5.21 shows
the end effector local forces, which respect the friction cones and the payload constraints.

CHAPTER 5. VALIDATION 63

0 20 40 60 80 100 120 140 160 180

-3

-2

-1

0

1

0 20 40 60 80 100 120 140 160 180

1

2

3

0 20 40 60 80 100 120 140 160 180

-2

0

2

0 20 40 60 80 100 120 140 160 180

-2

-1

0

0 20 40 60 80 100 120 140 160 180

-2

0

2

0 20 40 60 80 100 120 140 160 180

-1

0

1

0 20 40 60 80 100 120 140 160 180

-2

0

2

0 20 40 60 80 100 120 140 160 180

-3

-2

-1

0

1

0 20 40 60 80 100 120 140 160 180

-3

-2

-1

0 20 40 60 80 100 120 140 160 180

-2

0

2

0 20 40 60 80 100 120 140 160 180

-2

-1

0

0 20 40 60 80 100 120 140 160 180

-2

0

2

0 20 40 60 80 100 120 140 160 180

-1

0

1

0 20 40 60 80 100 120 140 160 180

-2

0

2

Figure 5.16: Circular trajectory tracking - Run-time joint angle comparison

CHAPTER 5. VALIDATION 64

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

0 20 40 60 80 100 120 140 160 180

-0.5

0

0.5

Figure 5.17: Circular trajectory tracking - Run-time joint velocities comparison

CHAPTER 5. VALIDATION 65

0 20 40 60 80 100 120 140 160 180
-50

-40

-30

0 20 40 60 80 100 120 140 160 180
-10

0

10

0 20 40 60 80 100 120 140 160 180
-12

-10

-8

-6

-4

-2

0 20 40 60 80 100 120 140 160 180
-40

-30

-20

0 20 40 60 80 100 120 140 160 180
-5

0

5

0 20 40 60 80 100 120 140 160 180
-20

-10

0

0 20 40 60 80 100 120 140 160 180

-2

0

2

4

6

0 20 40 60 80 100 120 140 160 180
-50

-40

-30

0 20 40 60 80 100 120 140 160 180
-10

0

10

0 20 40 60 80 100 120 140 160 180
0

10

20

0 20 40 60 80 100 120 140 160 180
-40

-30

-20

0 20 40 60 80 100 120 140 160 180
-5

0

5

0 20 40 60 80 100 120 140 160 180
-20

-15

-10

0 20 40 60 80 100 120 140 160 180

-4

-2

0

Figure 5.18: Circular trajectory tracking - Run-time joint torques comparison

CHAPTER 5. VALIDATION 66

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

0 20 40 60 80 100 120 140 160 180
0

50

100

Figure 5.19: Circular trajectory tracking - Run-time joint temperatures comparison

CHAPTER 5. VALIDATION 67

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

-0
.1

-0
.0

5

0

0
.0

5

0
.1

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

1
.1

1
.2

1
.3

1
.4

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

1
.4

1
.5

1
.6

1
.7

1
.8

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

1
.4

1
.5

1
.6

1
.7

1
.8

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

1
.4

1
.5

1
.6

1
.7

1
.8

Figure 5.20: Circular trajectory tracking - Run-time box position and orientation comparison

CHAPTER 5. VALIDATION 68

0 20 40 60 80 100 120 140 160 180

-5

0

5

0 20 40 60 80 100 120 140 160 180

-75

-70

-65

0 20 40 60 80 100 120 140 160 180

20

25

30

35

0 20 40 60 80 100 120 140 160 180

-5

0

5

0 20 40 60 80 100 120 140 160 180

65

70

75

0 20 40 60 80 100 120 140 160 180

20

25

30

35

Figure 5.21: Circular trajectory tracking - Run-time global contact forces comparison

CHAPTER 5. VALIDATION 69

0 20 40 60 80 100 120 140 160 180

22

23

24

25

26

27

0 20 40 60 80 100 120 140 160 180

-75

-70

-65

0 20 40 60 80 100 120 140 160 180

-5

0

5

0 20 40 60 80 100 120 140 160 180

22

23

24

25

26

27

0 20 40 60 80 100 120 140 160 180

65

70

75

0 20 40 60 80 100 120 140 160 180

-5

0

5

Figure 5.22: Circular trajectory tracking - Run-time local contact forces comparison

CHAPTER 5. VALIDATION 70

(a) No Temp. const. t=40s (b) Temp. const. t=40s

(c) No Temp. const. t=120s (d) Temp. const. t=120s

Figure 5.23: Circular trajectory tracking - Configuration evolution

71

Chapter 6

Conclusion

Over the past decade the possibility to employ robots in scenarios that are too dangerous
for humans to enter, has significantly gained the interest of the robotics community. In
particular, when such robots are used to perform heavy manipulation tasks they are likely
to face thermal fatigue issues, which may eventually contribute to the robot damage. In this
respect, this thesis has proposed a nonlinear model predictive (NMPC) approach to effec-
tively prevent the motor burnout problem while executing a bimanual heavy manipulation
task. To formulate the NMPC algorithm, the background on NMPC has been first provided,
starting from the concepts of nonlinear programming and optimal control. Then, direct
methods to deal with optimal control problems has been described both from a theoretical
and practical standpoint. Subsequently, background knowledge on mathematical modelling
of robotic manipulators has been provided, ranging from the definition of the end-effector
pose to the analysis of the forward and inverse kinematic and dynamics of robots. During
the study, it has been introduced the fixed-base bimanual manipulator platform over which
the problem was formulated and then it has been formalized the optimal control problem
describing a thermal bounded heavy payload manipulation in terms of optimization vari-
ables, cost function, and constraints. Finally, the complete optimal control problem has
been used as starting point to define the model predictive controller. In the last Chap-
ter, the description of the real robot platform, CENTAURO, and the software framework
(CasADi, Pinocchio, ROS) exploited in this work have been introduced. Moreover, details
of the algorithm implementation and experimental result summary have been provided. To
conclude, the proposed nonlinear model predictive controller has been tested in two heavy
payload manipulation tasks. The first test required the robot to hold a box in a fixed po-
sition in Cartesian space. The result shows that, while executing the assigned task, the
robot configuration was autonomously changed at run-time in order not to violate the ther-
mal bound imposed to protect motors from burnout. The first test solution was compared
to a minimum effort problem solution, showing that thanks to the NMPC algorithm, the
torque reduction was temperature dependent and considers thermal fatigue of specific joints,
whereas a minimum effort problem minimized the torques independently of the temperature
of the motors. A similar result was shown in the second experiment, which required the

CHAPTER 6. CONCLUSION 72

robot to move the box center of mass over a circular trajectory at a fixed distance from its
pelvis. In that case, the robot executes the task until continuing the task execution would
require the temperature constraint violation. In the second test, the robot autonomously
moves the box closer to its pelvis finding a new equilibrium position that protects the motors
from burnout. Our results show that a robot can perform high-load tasks while preventing
motors from overheating during operation through joint reconfiguration; naturally, other
joints must carry more load to produce the desired task in the Cartesian space. As a result,
it is possible to extend the working time of the robot during tasks and avoid any potential
damage due to the overheating of the actuators.

During the NMPC algorithm tests, some problems were pointed out. We recall that
at each time step the NMPC solves an optimal control problem that predicts the system
evolution over the future user-defined time horizon th. The NMPC method makes sense
if any optimal control problem requires a computation time tc shorter than the prediction
horizon. Moreover, the solution should be feasible and its feasibility is strictly related to,
the prediction horizon and the number of multiple shooting nodes. Increasing the number
of multiple shooting nodes would increase the computation time needed to solve the optimal
control problem as well, whereas reducing them too much would decrease the solver degrees
of freedom resulting in the problem infeasibility, unless the prediction horizon is reduced as
well. Having a short time horizon, though, makes it difficult to satisfy the time constraint
tc ≤ th. This works used a large time horizon taking advantage of the slow motor thermal
dynamics and a limited number of multiple shooting nodes in order to respect the time
constraint. The aforementioned considerations show one drawback of this approach, which
requires finding a proper time horizon, number of nodes and cost function weight empirically
for each different task to perform.

6.1 Future research directions

The natural evolution of this thesis would move in the direction of parameters identification
for the employed thermal model. In fact, as mentioned in Chapter 5, the thermal model,
employed to predict the motor temperature evolution, does not represent the real motor ther-
mal model because of the unknown parameters. The experiments on the real CENTAURO
platform performed in Chapter 5 allowed the collection of real sampled data that will be
used in the future for the identification procedure. To this end, due to the linearity of the
thermal model with respect to the unknown parameters, the least-squares method will be
likely employed. The objective of the method is to estimate the parameters of the model,
based on the observed pairs of values. The best fit in the least-squares sense minimizes the
sum of squared residuals, which is defined as the difference between an observed value, and
the fitted value provided by a model.

From a long-term perspective, a second future work will consist in moving towards the

CHAPTER 6. CONCLUSION 73

whole body optimization by considering also the lower body of CENTAURO. In this thesis,
the optimization process was designed taking into account only two arms of the CENTAURO
platform. To fully exploit the fatigue management system, the method may be applied
including also the CENTAURO legs articulations, wheels and torso joint motions.

74

Appendix A

Centauro platform limits

A.1 Joint limits

Joint name Angle L.B.[rad] Angle U.B.[rad] Velocity[rad
s

] Torque[Nm]

Left Shoulder pitch −3.312 1.615 3.86 147.0

Left Shoulder Roll 0.020 3.431 3.86 147.0

Left Shoulder yaw −2.552 2.566 6.06 147.0

Left Elbow −2.465 0.280 6.06 147.0

Left Forearm Yaw −2.569 2.562 11.72 55.0

Left Forearm Pitch −1.529 1.509 11.72 55.0

Left Wrist Yaw −2.565 2.569 20.35 28.32

Right Shoulder pitch −3.3458 1.6012 3.86 147.0

Right shoulder Roll −3.4258 −0.0138 3.86 147.0

Right shoulder yaw −2.5614 2.5606 6.06 147.0

Right Elbow −2.4794 0.2886 6.06 147.0

Right Forearm Yaw −2.5394 2.5546 11.72 55.0

Right Forearm Pitch −1.5154 1.5156 11.72 55.0

Right Wrist Yaw −2.5554 2.5686 20.35 28.32

75

Appendix B

Test parameters

B.1 Payload holding experiment

Parameter Symbol Value Units

Box holding position pbox [0.8, 0, 1.0] m

Prediction Horizon th 20 s

Multiple shooting nodes N 40 #

Number of iterations j 5 #

Position error weight wp 1000.0 #

Contact force weight wf 0.01 #

Joint velocity weight wq 10.0 #

Torque weight wτ 1.0 #

Payload length L 0.35 m

Payload mass m 10 kg

Friction coefficient µ 0.35 #

Temperature bound Tbound 80 ◦C

Room temperature Ta 20 ◦C

APPENDIX B. TEST PARAMETERS 76

B.2 Circular trajectory tracking experiment

Parameter Symbol Value Units

Box initial position pini [0.9, 0, 1.2] m

Prediction Horizon th 20 s

Multiple shooting nodes N 40 #

Number of iterations j 5 #

Position error weight wp 1000.0 #

Orientation error weight wo 100.0 #

Contact force weight wf 0.01 #

Joint velocity weight wq 10.0 #

Payload length L 0.35 m

Payload mass m 5 kg

Trajectory radius R 0.1 m

Friction coefficient µ 0.35 #

Temperature bound Tbound 80 ◦C

Room temperature Ta 20 ◦C

77

Bibliography

[1] Dana Kulic and Elizabeth Croft. “Pre-collision safety strategies for human-robot inter-
action”. In: Auton. Robots 22 (Jan. 2007), pp. 149–164. doi: 10.1007/s10514-006-
9009-4.

[2] A. D. Luca et al. “Collision Detection and Safe Reaction with the DLR-III Lightweight
Manipulator Arm”. In: 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2006, pp. 1623–1630. doi: 10.1109/IROS.2006.282053.

[3] Sami Haddadin et al. “On making robots understand safety: Embedding injury knowl-
edge into control”. In: The International Journal of Robotics Research 31.13 (2012),
pp. 1578–1602. doi: 10.1177/0278364912462256.

[4] S. Trujillo and M. Cutkosky. “Thermally constrained motor operation for a climbing
robot”. In: 2009 IEEE International Conference on Robotics and Automation. 2009,
pp. 2362–2367. doi: 10.1109/ROBOT.2009.5152870.

[5] L. Peternel, N. Tsagarakis, and A. Ajoudani. “A Method for Robot Motor Fatigue
Management in Physical Interaction and Human-Robot Collaboration Tasks”. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018,
pp. 2850–2856. doi: 10.1109/IROS.2018.8594196.

[6] Matthieu Guilbert, Pierre-Brice Wieber, and Luc Joly. “Optimization of Complex
Robot Applications under Real Physical Limitations”. In: The International Journal
of Robotics Research 27 (May 2008). doi: 10.1177/0278364908090465.

[7] I. Kumagai et al. “Whole body joint load reduction control for high-load tasks of hu-
manoid robot through adapting joint torque limitation based on online joint tempera-
ture estimation”. In: 2014 IEEE-RAS International Conference on Humanoid Robots.
2014, pp. 463–468. doi: 10.1109/HUMANOIDS.2014.7041402.

[8] S. Noda et al. “Online maintaining behavior of high-load and unstable postures based
on whole-body load balancing strategy with thermal prediction”. In: 2014 IEEE Inter-
national Conference on Automation Science and Engineering (CASE). 2014, pp. 1166–
1171. doi: 10.1109/CoASE.2014.6899474.

[9] J. Urata et al. “Thermal control of electrical motors for high-power humanoid robots”.
In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2008,
pp. 2047–2052. doi: 10.1109/IROS.2008.4651110.

BIBLIOGRAPHY 78

[10] M. Guilbert, P. Wieber, and L. Joly. “Optimal Trajectory Generation for Manipulator
Robots under Thermal Constraints”. In: 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2006, pp. 742–747. doi: 10.1109/IROS.2006.282623.

[11] Wei Tan et al. “Trajectory Optimization for High-Power Robots with Motor Tempera-
ture Constraints: 19th Annual Conference, TAROS 2018, Bristol, UK July 25-27, 2018,
Proceedings”. In: (July 2018), pp. 3–14. doi: 10.1007/978-3-319-96728-8_1.

[12] J. Lu and A. Murray. “DSP-based thermal protection for brushless servo motor”. In:
IEE Colloquium on Variable Speed Drives and Motion Control. 1992, pp. 7/1–7/4.

[13] O. Craiu et al. “3D Finite Element thermal analysis of a small power PM DC motor”.
In: 2010 12th International Conference on Optimization of Electrical and Electronic
Equipment. 2010, pp. 389–394. doi: 10.1109/OPTIM.2010.5510335.

[14] E. Chauveau et al. “A statistical approach of temperature calculation in electrical
machines”. In: IEEE Transactions on Magnetics 36.4 (2000), pp. 1826–1829. issn:
1941-0069. doi: 10.1109/20.877800.

[15] R. Yabiku et al. “Use of Thermal Network on Determining the Temperature Distri-
bution Inside Electric Motors in Steady-State and Dynamic Conditions”. In: IEEE
Transactions on Industry Applications 46.5 (2010), pp. 1787–1795. issn: 1939-9367.
doi: 10.1109/TIA.2010.2057398.

[16] “1. Introduction to Nonlinear Programming”. In: Practical Methods for Optimal Con-
trol and Estimation Using Nonlinear Programming, pp. 1–49.

[17] Lorenz Biegler. “On the Implementation of a Primal-Dual Interior Point Filter Line
Search Algorithm for Large-Scale Nonlinear Programming”. In: Mathematical Pro-
gramming 106 (Jan. 2004).

[18] Paul Boggs and Jon Tolle. “Sequential Quadratic Programming”. In: Acta Numerica
4 (Jan. 1995), pp. 1–51. doi: 10.1017/S0962492900002518.

[19] Moritz Diehl and Sébastien Gros. Numerical Optimization of Dynamic Systems. 2016.

[20] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. 1st. Springer Pub-
lishing Company, Incorporated, 2008. isbn: 1846286417.

[21] Rodrigo S. Jamisola and Rodney G. Roberts. “A more compact expression of relative
Jacobian based on individual manipulator Jacobians”. In: Robotics and Autonomous
Systems 63 (2015), pp. 158 –164. issn: 0921-8890. doi: https://doi.org/10.1016/
j.robot.2014.08.011. url: http://www.sciencedirect.com/science/article/
pii/S0921889014001699.

[22] Luca Muratore et al. “XBotCore: A Real-Time Cross-Robot Software Platform”. In:
Apr. 2017. doi: 10.1109/IRC.2017.45.

[23] A. Laurenzi et al. “CartesI/O: A ROS Based Real-Time Capable Cartesian Control
Framework”. In: 2019 International Conference on Robotics and Automation (ICRA).
2019, pp. 591–596. doi: 10.1109/ICRA.2019.8794464.

BIBLIOGRAPHY 79

[24] Joel A E Andersson et al. “CasADi – A software framework for nonlinear optimization
and optimal control”. In: Mathematical Programming Computation 11.1 (2019), pp. 1–
36. doi: 10.1007/s12532-018-0139-4.

[25] Justin Carpentier et al. “The Pinocchio C++ library — A fast and flexible implemen-
tation of rigid body dynamics algorithms and their analytical derivatives”. In: Jan.
2019. doi: 10.1109/SII.2019.8700380.

